scholarly journals Anti‐CD52 antibody treatment in murine experimental autoimmune encephalomyelitis induces dynamic and differential modulation of innate immune cells in peripheral immune and central nervous systems

Immunology ◽  
2021 ◽  
Author(s):  
Mark Barbour ◽  
Rachel Wood ◽  
Tanith Harte ◽  
Trevor J Bushell ◽  
Hui‐Rong Jiang
2015 ◽  
Vol 37 (1) ◽  
pp. 269-275 ◽  
Author(s):  
Ramona Halmer ◽  
Laura Davies ◽  
Yang Liu ◽  
Klaus Fassbender ◽  
Silke Walter

Background: Multiple sclerosis is the most common autoimmune disease of the central nervous system in young adults and histopathologically characterized by inflammation, demyelination and gliosis. It is considered as a CD4+ T cell-mediated disease, but also a disease-promoting role of the innate immune system has been proposed, based e.g. on the observation that innate immune receptors modulate disease severity of experimental autoimmune encephalomyelitis. Recent studies of our group provided first evidence for a key role of the innate immune LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis. CD14-deficient experimental autoimmune encephalomyelitis mice showed increased clinical symptoms and enhanced infiltration of monocytes and neutrophils in brain and spinal cord. Methods: In the current study, we further investigated the causes of the disease aggravation by CD14-deficiency and examined T cell activation, also focusing on the costimulatory molecules CTLA-4 and CD28, and T cell migration capacity over the blood brain barrier by FACS analysis, in vitro adhesion and transmigration assays. Results: In the results, we observed a significantly increased migration of CD14-deficient lymphocytes across an endothelial monolayer. In contrast, we did not see any differences in expression levels of TCR/CTLA-4 or TCR/CD28 and lymphocyte adhesion to endothelial cells from CD14-deficient compared to wildtype mice. Conclusion: The results demonstrate an important role of CD14 in migration of lymphocytes, and strengthen the importance of innate immune receptors in adaptive immune disorders, such as multiple sclerosis.


Author(s):  
Sarah Dhaiban ◽  
Mena Al-Ani ◽  
Noha Mousaad Elemam ◽  
Mahmood H Al-Aawad ◽  
Zeinab Al-Rawi ◽  
...  

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS) characterized by varying degrees of demyelination of uncertain etiology, and is associated with specific environmental and genetic factors. Upon recognition of CNS antigens, the immune cells initiate an inflammatory process which leads to destruction and deterioration of the neurons. Innate immune cells such as macrophages, dendritic cells and natural killer cells are known to play critical roles in the pathogenesis of MS. Also, the activation of peripheral CD4+ T cells by CNS antigens leads to their extravasation into the CNS causing damages that exacerbates the disease. This could be accompanied by dysregulation of T regulatory cells and other cell types functions. Experimental autoimmune encephalomyelitis (EAE) is a mouse model used to study the pathophysiology of MS disease. In this review, we highlight the roles of innate and adaptive immune players in the pathogenesis of MS and EAE.


2015 ◽  
Vol 6 ◽  
Author(s):  
Fernández Hurst Nicolás ◽  
Falcón Cristian ◽  
Rupil Lucía ◽  
Cervi Laura ◽  
Monferran Clara ◽  
...  

2004 ◽  
Vol 10 (5) ◽  
pp. 540-548 ◽  
Author(s):  
Mathilde SA Deloire ◽  
Tarik Touil ◽  
Bruno Brochet ◽  
Vincent Dousset ◽  
Jean-Marie Caillé ◽  
...  

Large inflammatory infiltrates of T cells, macrophages and B cells in the central nervous system (CNS) contribute to the pathogenesis of multiple sclerosis (MS). The passage of T cells through the blood-brain barrier can be suppressed with antibodies directed against alpha-4 integrins (VLA-4) that mediate T-cell adherence. This treatment, in phase III of clinical trial evaluation, reduces lesion development in MS patients. In the ongoing inflammatory disease process the consequences of T-cell inhibitory anti-VLA-4 antibodies on inflammatory compounds are still poorly investigated. We show that anti-VLA-4 antibody treatment during the late preclinical phase of the acute experimental autoimmune encephalomyelitis (EAE) MS rat model interrupts T-cell egress out of the vascular compartment and suppresses clinical disease and histological alterations but macrophage recruitment in the CNS is not fully compromised. Among the treated EAE animals not developing disease, none presented foci of T-cell infiltration in CNS. However, in 75% of the treated EAE rats monocyte ingress in CNS was observedin vivo by magnetic resonance imaging with the ultrasmall superparamagnetic iron oxide contrast agent. Our data shed new light on the role of remaining macrophage brain infiltration in an induced but interrupted T-cell-mediated EAE disease process.


2014 ◽  
Vol 87 (4) ◽  
pp. 625-635 ◽  
Author(s):  
Susanne Schiffmann ◽  
Andreas Weigert ◽  
Julia Männich ◽  
Max Eberle ◽  
Kerstin Birod ◽  
...  

Sci ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 12
Author(s):  
Sarah Dhaiban ◽  
Mena Al-Ani ◽  
Noha Mousaad Elemam ◽  
Mahmood H. Al-Aawad ◽  
Zeinab Al-Rawi ◽  
...  

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the myelination of the neurons present in the central nervous system (CNS). The exact etiology of MS development is unclear, but various environmental and genetic factors might play a role in initiating the disease. Experimental autoimmune encephalomyelitis (EAE) is a mouse model that is used to study the pathophysiology of MS disease as well as the effects of possible therapeutic agents. In addition, autoreactive immune cells trigger an inflammatory process upon the recognition of CNS antigens, which leads to destruction of the neurons. These include innate immune cells such as macrophages, dendritic cells, and natural killer cells. Additionally, the activation and extravasation of adaptive immune cells such as CD4+ T cells into the CNS may lead to further exacerbation of the disease. However, many studies revealed that immune cells could have either a protective or pathological role in MS. In this review, we highlight the roles of innate and adaptive immune cellular and soluble players that contribute to the pathogenesis of MS and EAE, which may be used as potential targets for therapy.


JCI Insight ◽  
2021 ◽  
Vol 6 (11) ◽  
Author(s):  
Andrés Cruz-Herranz ◽  
Frederike C. Oertel ◽  
Kicheol Kim ◽  
Ester Cantó ◽  
Garrett Timmons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document