scholarly journals SEX-RATIO CONFLICT BETWEEN QUEENS AND WORKERS IN EUSOCIAL HYMENOPTERA: MECHANISMS, COSTS, AND THE EVOLUTION OF SPLIT COLONY SEX RATIOS

Evolution ◽  
2005 ◽  
Vol 59 (12) ◽  
pp. 2626-2638 ◽  
Author(s):  
Ken R. Helms ◽  
Max Reuter ◽  
Laurent Keller
Keyword(s):  
2021 ◽  
pp. 140349482110100
Author(s):  
Ralph Catalano

Aims: To determine whether differences between Norway’s and Sweden’s attempts to contain SARS-CoV-2 infection coincided with detectably different changes in their all-cause mortality sex ratios. Measuring temporal variation in the all-cause mortality sex ratio before and during the pandemic in populations exposed to different constraints on risky behavior would allow us to better anticipate changes in the ratio and to better understand its association with infection control strategies. Methods: I apply time Box–Jenkins modeling to 262 months of pre-pandemic mortality sex ratios to arrive at counterfactual values of 10 intra-pandemic ratios. I compare counterfactual to observed values to determine if intra-pandemic ratios differed detectably from those expected as well as whether the Norwegian and Swedish differences varied from each other. Results: The male to female mortality sex ratio in both Norway and Sweden increased during the pandemic. I, however, find no evidence that the increase differed between the two countries despite their different COVID-19 containment strategies. Conclusion: Societal expectations of who will die during the COVID-19 pandemic will likely be wrong if they assume pre-pandemic mortality sex ratios because the intra-pandemic ratios appear, at least in Norway and Sweden, detectably higher. The contribution of differences in policies to reduce risky behavior to those higher ratios appears, however, small.


2021 ◽  
Vol 112 (2) ◽  
pp. 155-164
Author(s):  
Suzanne Edmands

Abstract Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males. For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1169-1180 ◽  
Author(s):  
Daven C Presgraves ◽  
Emily Severance ◽  
Gerald S Willrinson

Meiotically driven sex chromosomes can quickly spread to fixation and cause population extinction unless balanced by selection or suppressed by genetic modifiers. We report results of genetic analyses that demonstrate that extreme female-biased sex ratios in two sister species of stalk-eyed flies, Cyrtodiopsis dalmanni and C. whitei, are due to a meiotic drive element on the X chromosome (Xd). Relatively high frequencies of Xd in C. dalmanni and C. whitei (13–17% and 29%, respectively) cause female-biased sex ratios in natural populations of both species. Sex ratio distortion is associated with spermatid degeneration in male carriers of Xd. Variation in sex ratios is caused by Y-linked and autosomal factors that decrease the intensity of meiotic drive. Y-linked polymorphism for resistance to drive exists in C. dalmanni in which a resistant Y chromosome reduces the intensity and reverses the direction of meiotic drive. When paired with Xd, modifying Y chromosomes (Ym) cause the transmission of predominantly Y-bearing sperm, and on average, production of 63% male progeny. The absence of sex ratio distortion in closely related monomorphic outgroup species suggests that this meiotic drive system may predate the origin of C. whitei and C. dalmanni. We discuss factors likely to be involved in the persistence of these sex-linked polymorphisms and consider the impact of Xd on the operational sex ratio and the intensity of sexual selection in these extremely sexually dimorphic flies.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1793
Author(s):  
Justin Van Goor ◽  
Diane C. Shakes ◽  
Eric S. Haag

Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker. 


Parasitology ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 757-765 ◽  
Author(s):  
M. C. TINSLEY ◽  
M. E. N. MAJERUS

Whilst most animals invest equally in males and females when they reproduce, a variety of vertically transmitted parasites has evolved the ability to distort the offspring sex ratios of their hosts. One such group of parasites are male-killing bacteria. Here we report the discovery of females of the ladybirdAnisosticta novemdecimpunctatathat produced highly female-biased offspring sex ratios associated with a 50% reduction in egg hatch rate. This trait was maternally transmitted with high efficiency, was antibiotic sensitive and was infectious following experimental haemolymph injection. We identified the cause as a male-killingSpiroplasmabacterium and phylogenetic analysis of rDNA revealed that it belongs to theSpiroplasma ixodetisclade in which other sex ratio distorters lie. We tested the potential for interspecific horizontal transfer by injection from an infectedA. novemdecimpunctataline into uninfected individuals of the two-spot ladybirdAdalia bipunctata. In this novel host, the bacterium was able to establish infection, transmit vertically and kill male embryos.


2000 ◽  
Vol 23 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Lincoln S. Rocha ◽  
André Luiz P. Perondini

In sciarid flies, the control of sex determination and of the progeny sex ratio is exercised by the parental females, and is based on differential X-chromosome elimination in the initial stages of embryogenesis. In some species, the females produce unisexual progenies (monogenic females) while in others, the progenies consist of males and females (digenic females). The sex ratio of bisexual progenies is variable, and departs considerably from 1:1. Bradysia matogrossensis shows both monogenic and digenic reproduction. In a recently established laboratory strain of this species, 15% of the females were digenic, 10% produced only females, 13% produced only males, and 62% produced progenies with one predominant sex (33% predominantly of female and 29% predominantly male progenies). These progeny sex ratios were maintained in successive generations. Females from female-skewed progenies yielded female- and male-producing daughters in a 1:1 ratio. In contrast, daughters of females from male-skewed progenies produce bisexual or male-skewed progenies. The X-chromosome of B. matogrossensis shows no inversion or other gross aberration. These results suggest that the control of the progeny sex ratio (or differential X-chromosome elimination) involves more than one locus or, at least, more than one pair of alleles. The data also suggest that, in sciarid flies, monogeny and digeny may share a common control mechanism.


2021 ◽  
Author(s):  
◽  
Elizabeth Victoria Berkeley

<p>The application of sex allocation theory can provide useful insight into endangered rhinoceros biology to improve in situ and ex situ conservation efforts by understanding the factors that cause a female to produce one sex of calf. By decreasing the birth sex ratio (number of males born per number of females born) in a population it may be possible to increase population growth rates. The first aim was to determine if an environmentally cued sex allocation response occurred in black rhinos. By examining rainfall and calf sex records in a wild black rhino population, I identified that birth sex ratios increase in rainy seasons and rainy years. Mothers were more likely to be observed with male calves if they conceived during the wet season (57.3% male) than during the dry season (42.9% male). Mothers were more likely to raise male calves if they conceived during wet years (60.2% male) than during dry years (46.1% male). Next, I examined whether pulsatile or random variation in sex ratios of different magnitudes, as might occur under changes in climate patterns, would be detrimental to rhinoceros population growth. Results demonstrated that while random increases in the magnitude of birth sex ratio variation, in either direction, increased population survival probability up to 0.907, sequential pulsed years of birth sex ratio bias had the opposite effect on population performance down to a survival probability of 0.619. Furthermore, for both scenarios, populations of less than 50 animals are particularly vulnerable to extinction. Since the sex biases observed in the captive rhinoceros population were attributed to several factors, I used an information theoretic approach to evaluate the relative importance of different hypotheses for birth sex bias for predicting calf sex. The results demonstrated that none of the models tested were greatly predictive of calf sex. Suspecting that the mechanisms that were cueing calf sex occur close to the time of conception and were nutritionally cued, in the final experiment, I measured changes in blood glucose in white rhinos after they ate different meals. At 90 minutes, serum glucose levels in rhinos eating the 10 % lucerne hay diet were significantly lower than the 5% glucose and 10% glucose diets but not the 10% pellet nor 10% grass hay diets. This is the first time such an experiment has been published in a wildlife species and not only demonstrates the feasibility of training rhinos for successive blood draws but also that captive diets are low glycemic for white rhinos. Overall, my research confirmed that an environmentally cued sex allocation response does occur in African rhinos, and changes in the duration and magnitude of sex ratio patterns can decrease population growth and increase potential for extinction. Additionally, none of the previous hypotheses for the suspected male-sex bias in captive born rhinos were influential on calf sex, which shifts the focus of sex allocation research in rhinos to more acute signals around the time of conception, such as changes in diet and body condition.</p>


2003 ◽  
Vol 81 (8) ◽  
pp. 1306-1311 ◽  
Author(s):  
Monica L Bond ◽  
Jerry O Wolff ◽  
Sven Krackow

We tested predictions associated with three widely used hypotheses for facultative sex-ratio adjustment of vertebrates using eight enclosed populations of gray-tailed voles, Microtus canicaudus. These were (i) the population sex ratio hypothesis, which predicts that recruitment sex ratios should oppose adult sex-ratio skews, (ii) the local resource competition hypothesis, which predicts female-biased recruitment at low adult population density and male-biased recruitment at high population density, and (iii) the first cohort advantage hypothesis, which predicts that recruitment sex ratios should be female biased in the spring and male biased in the autumn. We monitored naturally increasing population densities with approximately equal adult sex ratios through the spring and summer and manipulated adult sex ratios in the autumn and measured subsequent sex ratios of recruits. We did not observe any significant sex-ratio adjustment in response to adult sex ratio or high population density; we did detect an influence of time within the breeding season, with more female offspring observed in the spring and more male offspring observed in the autumn. Significant seasonal increases in recruitment sex ratios indicate the capacity of female gray-tailed voles to manipulate their offspring sex ratios and suggest seasonal variation in the relative reproductive value of male and female offspring to be a regular phenomenon.


Author(s):  
Shoshana Grossbard

This chapter reviews models of marriage, with special emphasis on how the sex ratio can help explain outcomes such as marriage formation, the intramarriage distribution of consumption goods, labor supply, savings, type of relationship, divorce, and intermarriage. Economic models of marriage pioneered by Gary Becker are reviewed in the first section and then extended in the next section to incorporate the labor market for the work-in-household approach of Grossbard. The following section discusses challenges in identifying exogenous variation in sex ratios and presents empirical evidence on the impact of sex ratios on labor supply, consumption, savings, and several other outcomes.


Author(s):  
P. Wirtz ◽  
T. Morato

There is sometimes a significant bias in the sex ratio of fish caught by longline. Usually, more females than males are caught. The possible reasons for unequal sex ratios in longline catches are listed and discussed. One sex could be more common in the area where the fishery takes place because there really is an unequal sex ratio in the population or because the other sex preferentially occurs in different places. Alternatively, longline fishery might preferentially catch one of the sexes. This could be a result of size difference between the sexes and thus a different response to the given hook size or bait size. Finally, sexes could differ in their feeding behaviour. There is growing evidence that females—not only of fish—are ‘energy maximizers’: they find food faster and spend more time feeding than do males. Thus, fishing methods using bait are likely to catch a higher proportion of females than fishing methods that do not use bait.


Sign in / Sign up

Export Citation Format

Share Document