Mixed effects of habitat fragmentation on species richness and community structure in a microarthropod microecosystem

2005 ◽  
Vol 30 (6) ◽  
pp. 684-691 ◽  
Author(s):  
Martin Hoyle ◽  
Alastair R. Harborne
2021 ◽  
Author(s):  
◽  
Franz-Rudolf Schnitzler

<p>Habitat fragmentation and the resulting decline in biodiversity through the loss of habitat are thought to be the main threat to insect extinctions. According to the trophic level hypothesis, habitat fragmentation affects parasitoids more severely than their herbivorous hosts. Parasitoids also may be correlated with plant species richness, because plants host a variety of phytophagous insects acting as hosts for parasitoids, or plants provide food or act as shelter for parasitoids. In this study, the effects of the forest fragment properties; area, isolation, percentage of residential area surrounding focal fragments and plant richness on parasitic wasps and their interactions were examined. These fragmentation effects were examined in 10 urban native bush remnants in the Wellington and Hutt Valley region of the lower North Island, New Zealand. Fragmentation effects on species abundance, richness and diversity and on community assemblages were examined for the wasp families Ichneumonidae, Pompilidae and Proctotrupidae. Correlations between beta diversity of the plant community and the parasitoid community were analysed and the study investigated whether individual parasitoid occurrences can be predicted by the range of their host's host plants. This study focused on interactions between the kawakawa moth larva Cleora scriptaria, its primary host plant Macropiper excelsum and the parasitism rates by two parasitoids Aleiodes declanae (an endemic species) and Meteorus pulchricornis (an exotic species) and the herbivory caused by C. scriptaria larvae. In addition to interaction responses to forest fragmentation properties, interaction responses were also examined with respect to the properties of the plot and individual plant. Individual species showed different trends in response to the fragmentation properties, making interpretation of a general community response difficult. The abundance, richness and diversity of small-bodied parasitoids were inversely related to increasing area and plant species richness. Parasitoid community composition changed with fragment isolation and plant species richness. Ichneumonidae strongly responded to isolation in one year, whereas the Pompilidae responded to plant species richness. The Proctotrupidae community structure showed no response to any of the fragmentation properties. Correlations between plant and parasitoid community structures were not significant and individual parasitoid-plant associations were weak and inconclusive. Parasitism rates for A. declanae were significantly higher in more isolated fragments with smaller trees, and were negatively affected by overall parasitism rates, more so in isolated fragments. Parasitism rates by M. pulchricornis responded positively to larval densities and declined with increasing plant richness. Herbivory was positively related to the abundance of M. excelsum, tree size and larval density. The current study provides evidence that the forest fragment properties examined are, on their own, not always sufficient predictors of community structure and interactions for parasitoids. Aspects of the results from this thesis conflict with the trophic-level hypothesis with species responding in a negative or positive way, or not responding at all to forest fragmentation effects. The findings of this thesis support to conserving species diversity by maintaining and enhancing all types of existing forest fragments to prevent species extinctions.</p>


2018 ◽  
Vol 75 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Casey A. Pennock ◽  
David Bender ◽  
Jordan Hofmeier ◽  
Jessica A. Mounts ◽  
Ryan Waters ◽  
...  

Fishways are a common tool for mitigating the effects of habitat fragmentation on fish, but their utility in low-gradient, sand-bed rivers of the Great Plains is not well studied. The Lincoln Street Fishway on the Arkansas River became operational in 2015 and was built specifically to pass small-bodied threatened fishes. We compared current and historical surveys up- and downstream of the barrier to test the effect of the fishway on community structure and conducted tagging experiments to test the ability of fishes to move into and through the fishway. Differences in community structure and species richness between communities up- and downstream of the dam were reduced following construction of the fishway. Surveys within the fishway revealed that 74% of species from the sampled community were using the fishway. Fishes marked with visible implant elastomer downstream of the dam were recaptured in the fishway, qualitatively showing that small-bodied fishes could move into and upstream within the fishway. We further quantified upstream movement for three species of small-bodied minnow tagged with passive integrated transponder tags during manipulations of flows through the fishway. Our results illustrate the potential for fishways to mitigate the effects of habitat fragmentation on fishes in sand-bed rivers.


2021 ◽  
Author(s):  
◽  
Franz-Rudolf Schnitzler

<p>Habitat fragmentation and the resulting decline in biodiversity through the loss of habitat are thought to be the main threat to insect extinctions. According to the trophic level hypothesis, habitat fragmentation affects parasitoids more severely than their herbivorous hosts. Parasitoids also may be correlated with plant species richness, because plants host a variety of phytophagous insects acting as hosts for parasitoids, or plants provide food or act as shelter for parasitoids. In this study, the effects of the forest fragment properties; area, isolation, percentage of residential area surrounding focal fragments and plant richness on parasitic wasps and their interactions were examined. These fragmentation effects were examined in 10 urban native bush remnants in the Wellington and Hutt Valley region of the lower North Island, New Zealand. Fragmentation effects on species abundance, richness and diversity and on community assemblages were examined for the wasp families Ichneumonidae, Pompilidae and Proctotrupidae. Correlations between beta diversity of the plant community and the parasitoid community were analysed and the study investigated whether individual parasitoid occurrences can be predicted by the range of their host's host plants. This study focused on interactions between the kawakawa moth larva Cleora scriptaria, its primary host plant Macropiper excelsum and the parasitism rates by two parasitoids Aleiodes declanae (an endemic species) and Meteorus pulchricornis (an exotic species) and the herbivory caused by C. scriptaria larvae. In addition to interaction responses to forest fragmentation properties, interaction responses were also examined with respect to the properties of the plot and individual plant. Individual species showed different trends in response to the fragmentation properties, making interpretation of a general community response difficult. The abundance, richness and diversity of small-bodied parasitoids were inversely related to increasing area and plant species richness. Parasitoid community composition changed with fragment isolation and plant species richness. Ichneumonidae strongly responded to isolation in one year, whereas the Pompilidae responded to plant species richness. The Proctotrupidae community structure showed no response to any of the fragmentation properties. Correlations between plant and parasitoid community structures were not significant and individual parasitoid-plant associations were weak and inconclusive. Parasitism rates for A. declanae were significantly higher in more isolated fragments with smaller trees, and were negatively affected by overall parasitism rates, more so in isolated fragments. Parasitism rates by M. pulchricornis responded positively to larval densities and declined with increasing plant richness. Herbivory was positively related to the abundance of M. excelsum, tree size and larval density. The current study provides evidence that the forest fragment properties examined are, on their own, not always sufficient predictors of community structure and interactions for parasitoids. Aspects of the results from this thesis conflict with the trophic-level hypothesis with species responding in a negative or positive way, or not responding at all to forest fragmentation effects. The findings of this thesis support to conserving species diversity by maintaining and enhancing all types of existing forest fragments to prevent species extinctions.</p>


2015 ◽  
Vol 75 (1) ◽  
pp. 114-124 ◽  
Author(s):  
M. Rocha ◽  
CC. Santos Júnior ◽  
GA. Damasceno-Júnior ◽  
VJ. Pott ◽  
A. Pott

The rhizomatous Cyperus giganteus, abundant in the Pantanal wetland, can dominate extense floodable areas as monodominant communities. The Jacadigo lake has a large area of C. giganteus, where we performed an evaluation on community structure during two months in 2010, before it was hit by a wildfire which top-killed the vegetation, compared to ten months post-fire. We utilized 40 plots of 1m × 1m, along permanent trails, assessing two strata: the upper, near the inflorescence of adult plants, and the lower, close to the water level. Our results show that fire does not affect dominance of C. giganteus, as it maintained the same cover as before fire; species richness is not much altered either - 28 before fire and 34 thereafter. Fire changed the floristic composition, due to the annual variation of species and the ability of some plants to colonize gaps and to regrow after fire from underground organs and seeds. The stratification of the vegetation with characteristic species of upper and lower strata was similar after fire.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2930 ◽  
Author(s):  
Temir A. Britayev ◽  
Elena Mekhova ◽  
Yury Deart ◽  
Daniel Martin

To assess whether closely related host species harbour similar symbiotic communities, we studied two polychaetes,Chaetopterussp. (n = 11) andChaetopteruscf.appendiculatus(n = 83) living in soft sediments of Nhatrang Bay (South China Sea, Vietnam). The former harboured the porcellanid crabsPolyonyxcf.heokandPolyonyxsp., the pinnotherid crabTetriassp. and the tergipedid nudibranchPhestillasp. The latter harboured the polynoid polychaeteOphthalmonoe pettiboneae, the carapid fishOnuxodon fowleriand the porcellanid crabEulenaios cometes, all of which, exceptO. fowleri, seemed to be specialized symbionts. The species richness and mean intensity of the symbionts were higher inChaetopterussp. than inC.cf.appendiculatus(1.8 and 1.02 species and 3.0 and 1.05 individuals per host respectively). We suggest that the lower density ofChaetopterussp. may explain the higher number of associated symbionts observed, as well as the 100% prevalence (69.5% inC.cf.appenciculatus). MostChaetopterussp. harboured two symbiotic species, which was extremely rare inC.cf.appendiculatus, suggesting lower interspecific interactions in the former. The crab and nudibranch symbionts ofChaetopterussp. often shared a host and lived in pairs, thus partitioning resources. This led to the species coexisting in the tubes ofChaetopterussp., establishing a tightly packed community, indicating high species richness and mean intensity, together with a low species dominance. In contrast, the aggressive, strictly territorial species associated withC.cf.appendiculatusestablished a symbiotic community strongly dominated by single species and, thus, low species richness and mean intensity. Therefore, we suggest that interspecific interactions are determining species richness, intensity and dominance, while intraspecific interactions are influencing only intensity and abundance. It is possible that species composition may have influenced the differences in community structure observed. We hypothesize that both host species could originally be allopatric. The evolutionary specialization of the symbiotic communities would occur in separated geographical areas, while the posterior disappearance of the existing geographical barriers would lead to the overlapped distribution.


2016 ◽  
Vol 8 (1) ◽  
pp. 357-366 ◽  
Author(s):  
Eddy Yusron

A study on Echinoderms community structure in marine national parks of Wakatobi, Southeast Sulawesi was conducted in six locations, i.e., Waha Beach, Coastal Sombo, Beach Houses, Beach Kapota, Banakawa beach, and Umala beach in October 2013. All of the six parks were located the Wakatobi territorial waters with coordinates of 5°06'25" S and 123°124'10 E. The results showed of 18 species of echinoderms representing six different types of Asteroidea, two types of Ophiuroidea, six types of Echinoidea, and four types of Holothuroidea. Group of starfish or Asteroidea was the most prominent on seagrass area. Based on the six transects sites, it turned out that the group of starfish (Asteridea) occupied a relatively high level of species richness. From the quantitative analysis values, we obtained diversity index (H) of 1.105 in Sombu, the highest evenness index (J) of 0.989 was found in Umala, and the highest species richness index values (D) of 0.132 was obtained in kapota. It seemed that all echinoderm groups were generally like seagrass microhabitat (12 types). While, sand and dead coral habitats were only occupied by 8 (eight) echinoderm groups. Keywords: echinoderms, diversity, Wakatobi, Southeast Sulawesi


Oecologia ◽  
2020 ◽  
Vol 194 (1-2) ◽  
pp. 205-219
Author(s):  
Ole Petter Laksforsmo Vindstad ◽  
Tone Birkemoe ◽  
Rolf Anker Ims ◽  
Anne Sverdrup-Thygeson

Abstract Successional processes can be observed for many organisms and resources, but most studies of succession have focused on plants. A general framework has been proposed, advocating that successional patterns in species turnover are predominantly driven by competition, dispersal or abiotic limitation, and that the patterning of species accumulation over time gives clues to which process is most influential in a given system. We applied this framework to succession in communities of wood-living beetles, utilizing ephemeral resources in the form of 60 experimentally created dead aspen high stumps. High stumps were created at sun-exposed sites (high ambient temperature; favourable abiotic conditions) and shaded sites (low ambient temperature; abiotically limiting conditions). The sites were intermixed, ensuring similar dispersal opportunities. Beetle species richness and abundance were monitored with flight interception traps over four consecutive years. Consistent with predictions from the tested framework, several beetle functional groups accumulated species more slowly at the unfavourable shaded sites than at the favourable exposed sites. Species richness at the exposed sites increased rapidly to a plateau, consistent with a limiting effect of competition on community development. Similar results were obtained for beetle abundance and community structure. Part of the variance in beetle community structure was jointly explained by habitat and fungal community composition, suggesting that differences in the composition and developmental rate of fungal communities in the two habitats contributed to the observed patterns. Targeted experimental studies are now required to decisively establish what processes underlie the contrasting successional trajectories in the two environments.


2019 ◽  
Vol 124 (3) ◽  
pp. 461-469 ◽  
Author(s):  
Xuejun Yang ◽  
Zhenying Huang ◽  
Ming Dong ◽  
Xuehua Ye ◽  
Guofang Liu ◽  
...  

Abstract Background and Aims Long-term studies to disentangle the multiple, simultaneous effects of global change on community dynamics are a high research priority to forecast future distribution of diversity. Seldom are such multiple effects of global change studied across different ecosystems. Methods Here we manipulated nitrogen deposition and rainfall at levels realistic for future environmental scenarios in three contrasting steppe types in Mongolia and followed community dynamics for 7 years. Key Results Redundancy analyses showed that community composition varied significantly among years. Rainfall and nitrogen manipulations did have some significant effects, but these effects were dependent on the type of response and varied between ecosystems. Community compositions of desert and meadow steppes, but not that of typical steppe, responded significantly to rainfall addition. Only community composition of meadow steppe responded significantly to nitrogen deposition. Species richness in desert steppe responded significantly to rainfall addition, but the other two steppes did not. Typical steppe showed significant negative response of species richness to nitrogen deposition, but the other two steppes did not. There were significant interactions between year and nitrogen deposition in desert steppe and between year and rainfall addition in typical steppe, suggesting that the effect of the treatments depends on the particular year considered. Conclusions Our multi-year experiment thus suggests that responses of community structure and diversity to global change drivers are ecosystem-dependent and that their responses to experimental treatments are dwarfed by the year-to-year community dynamics. Therefore, our results point to the importance of taking annual environmental variability into account for understanding and predicting the specific responses of different ecosystems to multiple global change drivers.


Sign in / Sign up

Export Citation Format

Share Document