Identification of a Novel Mutation Affecting Domain V of the 23S rRNA Gene inHelicobacter pylori

Helicobacter ◽  
2004 ◽  
Vol 9 (5) ◽  
pp. 396-399 ◽  
Author(s):  
Sonia Toracchio ◽  
Gitana M. Aceto ◽  
Renato Mariani-Costantini ◽  
Pasquale Battista ◽  
Leonardo Marzio
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xijie Liu ◽  
Yue Jiang ◽  
Xiaogeng Chen ◽  
Jing Li ◽  
Dawei Shi ◽  
...  

Throat swabs from children with suspectedMycoplasma pneumoniae(M. pneumoniae) infection were cultured for the presence ofM. pneumoniaeand its species specificity using the 16S rRNA gene. Seventy-sixM. pneumoniaestrains isolated from 580 swabs showed that 70 were erythromycin resistant with minimum inhibitory concentrations (MIC) around 32–512 mg/L. FiftyM. pneumoniaestrains (46 resistant, 4 sensitive) were tested for sensitivity to tetracycline, ciprofloxacin, and gentamicin. Tetracycline and ciprofloxacin had some effect, and gentamicin had an effect on the majority ofM. pneumoniaestrains. Domains II and V of the 23S rRNA gene and the ribosomal protein L4 and L22 genes, both of which are considered to be associated with macrolide resistance, were sequenced and the sequences were compared with the corresponding sequences in M129 registered with NCBI and the FH strain. The 70 resistant strains all showed a 2063 or 2064 site mutation in domain V of the 23S rRNA but no mutations in domain II. Site mutations of L4 or L22 can be observed in either resistant or sensitive strains, although it is not known whether this is associated with drug resistance.


2005 ◽  
Vol 49 (6) ◽  
pp. 2302-2306 ◽  
Author(s):  
Miyuki Morozumi ◽  
Keiko Hasegawa ◽  
Reiko Kobayashi ◽  
Nagako Inoue ◽  
Satoshi Iwata ◽  
...  

ABSTRACT A total of 195 Mycoplasma pneumoniae strains were isolated from 2,462 clinical specimens collected between April 2002 and March 2004 from pediatric outpatients with respiratory tract infections. Susceptibilities to six macrolide antibiotics (ML), telithromycin, minocycline, levofloxacin, and sitafloxacin were determined by the microdilution method using PPLO broth. A total of 183 M. pneumoniae isolates were susceptible to all agents and had excellent MIC90s in the following order: 0.00195 μg/ml for azithromycin and telithromycin, 0.0078 μg/ml for clarithromycin, 0.0156 μg/ml for erythromycin, 0.0625 μg/ml for sitafloxacin, 0.5 μg/ml for minocycline, and 1 μg/ml for levofloxacin. Notably, 12 ML-resistant M. pneumoniae strains were isolated from patients with pneumonia (10 strains) or acute bronchitis (2 strains). These strains showed resistance to ML with MICs of ≥1 μg/ml, except to rokitamycin. Transition mutations of A2063G or A2064G, which correspond to A2058 and A2059 in Escherichia coli, in domain V on the 23S rRNA gene in 11 ML-resistant strains were identified. By pulsed-field gel electrophoresis typing, these strains were classified into groups I and Vb, as described previously (A. Cousin-Allery, A. Charron, B. D. Barbeyrac, G. Fremy, J. S. Jensen, H. Renaudin, and C. Bebear, Epidemiol. Infect. 124:103-111, 2000). These findings suggest that excessive usage of MLs acts as a trigger to select mutations on the corresponding 23S rRNA gene with the resultant occurrence of ML-resistant M. pneumoniae. Monitoring ML susceptibilities for M. pneumoniae is necessary in the future.


Helicobacter ◽  
2007 ◽  
Vol 12 (5) ◽  
pp. 505-509 ◽  
Author(s):  
Leonardo Garrido ◽  
Hector Toledo

2004 ◽  
Vol 48 (9) ◽  
pp. 3583-3585 ◽  
Author(s):  
Issam I. Raad ◽  
Hend A. Hanna ◽  
Ray Y. Hachem ◽  
Tanya Dvorak ◽  
Rebecca B. Arbuckle ◽  
...  

ABSTRACT The susceptibility of 135 vancomycin-resistant Enterococcus faecium bacteremic isolates to linezolid and quinupristin-dalfopristin was determined. All were susceptible to linezolid, while 88% were susceptible to quinupristin-dalfopristin prior to the clinical use of the drugs at our hospital. More than 6 months after their clinical use, a decrease in susceptibility was noted for only linezolid at 83%. This was related in part to a single G2576U gene mutation in domain V of the 23S rRNA gene.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258694
Author(s):  
Nobuhisa Ishiguro ◽  
Rikako Sato ◽  
Toshihiko Mori ◽  
Hiroshi Tanaka ◽  
Mitsuo Narita ◽  
...  

Objectives Macrolides are generally considered to be the drugs of choice for treatment of patients with Mycoplasma pneumoniae infection. However, macrolide-resistant M. pneumoniae has been emerging since about 2000. The Smart Gene® system (MIZUHO MEDY Co., Ltd., Tosu, Japan) is a novel fully automated system for detection of pathogens using the method of quantitative polymerase chain reaction (qPCR) with QProbe (QProbe PCR). The entire procedure is completed within 50 min and the size of the instrument is small (15 x 34 x 30 cm). The purpose of this study was to evaluate the usefulness of the Smart Gene® system for detection of M. pneumoniae and detection of a point mutation at domain V of the 23S rRNA gene of M. pneumoniae. Materials Pharyngeal swab samples were collected from 154 patients who were suspected of having respiratory tract infections associated with M. pneumoniae. Results Compared with the results of qPCR, the sensitivity and specificity of the Smart Gene® system were 98.7% (78/79) and 100.0% (75/75), respectively. A point mutation at domain V of the 23S rRNA gene was detected from 7 (9.0%) of 78 M. pneumoniae-positive samples by the Smart Gene® system and these results were confirmed by direct sequencing. The minimum inhibitory concentrations of clarithromycin among the 5 isolates of M. pneumoniae with a point mutation at domain V of the 23S rRNA gene were >64 μg/ml and those among the 33 isolates without a mutation in the 23S rRNA gene were <0.0625 μg/ml. Conclusion The Smart Gene® system is a rapid and accurate assay for detection of the existence of M. pneumoniae and a point mutation at domain V of the 23S rRNA gene of M. pneumoniae at the same time. The Smart Gene® system is suitable for point-of-care testing in both hospital and outpatient settings.


2000 ◽  
Vol 38 (11) ◽  
pp. 3991-3993 ◽  
Author(s):  
Sotirios Tsiodras ◽  
Howard S. Gold ◽  
Eoin P. G. Coakley ◽  
Christine Wennersten ◽  
Robert C. Moellering ◽  
...  

The highly conserved central loop of domain V of 23S RNA (nucleotides 2042 to 2628; Escherichia coli numbering) is implicated in peptidyltransferase activity and represents one of the target sites for macrolide, lincosamide, and streptogramin B antibiotics. DNA encoding domain V (590 bp) of several species ofEnterococcus was amplified by PCR. Twenty enterococcal isolates were tested, including Enterococcus faecium (six isolates), Enterococcus faecalis, Enterococcus avium, Enterococcus durans, Enterococcus gallinarum, Enterococcus casseliflavus (two isolates of each), and Enterococcus raffinosus, Enterococcus mundtii, Enterococcus malodoratus, andEnterococcus hirae (one isolate of each). For all isolates, species identification by biochemical testing was corroborated by 16S rRNA gene sequencing. The sequence of domain V of the 23S rRNA gene from E. faecium and E. faecalis differed from those of all other enterococci. The domain V sequences of E. durans and E. hirae were identical. This was also true for E. gallinarum and E. casseliflavus. E. avium differed from E. casseliflavus by 23 bases, from E. durans by 16 bases, and from E. malodoratus by 2 bases. E. avium differed fromE. raffinosus by one base. Despite the fact that domain V is considered to be highly conserved, substantial differences were identified between several enterococcal species.


2014 ◽  
Vol 59 (2) ◽  
pp. 1048-1051 ◽  
Author(s):  
Zibo Zhou ◽  
Xiangzhi Li ◽  
Xiaojian Chen ◽  
Fangjun Luo ◽  
Changwang Pan ◽  
...  

ABSTRACTMycoplasma pneumoniaeis a major pathogen causing community-acquired pneumoniae (CAP), which is generally treated with macrolides. In recent years, however, although macrolide-resistantM. pneumoniaehas been reported frequently, particularly in China, very little is known about the prevalence of macrolide-resistantM. pneumoniaeinfection in adults. In this study, we survey the macrolide-resistantM. pneumoniaein adults in Zhejiang province and characterize the mechanisms of resistance to macrolide. Six hundred fifty throat swab samples were collected from adult patients with CAP from January 2012 to August 2014. These samples were assayed by nested PCR and then cultivated forM. pneumoniae. All isolates were sequenced to determine the mutation in domain V of the 23S rRNA gene. The activities of 10 antibiotics against macrolide-resistantM. pneumoniaeisolates were also investigatedin vitro. Moreover, restriction fragment length polymorphism (RFLP) analysis of the amplified P1 gene was used to type 50 resistant strains. One hundred percent (71/71) ofM. pneumoniaestrains isolated from adults with CAP were resistant to erythromycin (MIC = 128 to >256 μg/ml), clarithromycin (MIC = 128 to >256 μg/ml), and azithromycin (MIC = 32 to >64 μg/ml). Furthermore, all macrolide-resistantM. pneumoniaestrains identified had an A2063G mutation in domain V of the 23S rRNA gene. Forty-six resistant strains (92.0%) were classified into type I strain on the basis of P1 gene PCR-RFLP analysis. According to these findings, it is suggested that macrolide-resistantM. pneumoniaeinfection is very prevalence among adults in Zhejiang province. Thus, there is necessary to perform the epidemiological monitoring of macrolide-resistantM. pneumoniaein the future.


2011 ◽  
Vol 8 (3) ◽  
pp. 375-379 ◽  
Author(s):  
Gao Wa Na Ren ◽  
Yang Wang ◽  
Zhangqi Shen ◽  
Xia Chen ◽  
Jianzhong Shen ◽  
...  

2004 ◽  
Vol 48 (12) ◽  
pp. 4624-4630 ◽  
Author(s):  
Mayumi Matsuoka ◽  
Mitsuo Narita ◽  
Norio Okazaki ◽  
Hitomi Ohya ◽  
Tsutomu Yamazaki ◽  
...  

ABSTRACT In recent years, Mycoplasma pneumoniae strains that are clinically resistant to macrolide antibiotics have occasionally been encountered in Japan. Of 76 strains of M. pneumoniae isolated in three different areas in Japan during 2000 to 2003, 13 strains were erythromycin (ERY) resistant. Of these 13 strains, 12 were highly ERY resistant (MIC, ≥256 μg/ml) and 1 was weakly resistant (MIC, 8 μg/ml). Nucleotide sequencing of domains II and V of 23S rRNA and ribosomal proteins L4 and L22, which are associated with ERY resistance, showed that 10 strains had an A-to-G transition at position 2063 (corresponding to 2058 in Escherichia coli numbering), 1 strain showed A-to-C transversion at position 2063, 1 strain showed an A-to-G transition at position 2064, and the weakly ERY-resistant strain showed C-to-G transversion at position 2617 (corresponding to 2611 in E. coli numbering) of domain V. Domain II and ribosomal proteins L4 and L22 were not involved in the ERY resistance of these clinical M. pneumoniae strains. In addition, by using our established restriction fragment length polymorphism technique to detect point mutations of PCR products for domain V of the 23S rRNA gene of M. pneumoniae, we found that 23 (24%) of 94 PCR-positive oral samples taken from children with respiratory infections showed A2063G mutation. These results suggest that ERY-resistant M. pneumoniae infection is not unusual in Japan.


Sign in / Sign up

Export Citation Format

Share Document