scholarly journals Effects of Interleukin-12 on the Induction of Cytotoxic T Lymphocytes from the Regional Lymph Node Lymphocytes of Patients with Lung Adenocarcinoma

1998 ◽  
Vol 89 (2) ◽  
pp. 192-198 ◽  
Author(s):  
Takeshi Hanagiri ◽  
Ichiro Yoshino ◽  
Mitsuhiro Takenoyama ◽  
Tomoko So ◽  
Hiroshi Fujie ◽  
...  
Breast Cancer ◽  
1998 ◽  
Vol 5 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Ryozo Eifuku ◽  
Ichiro Yoshino ◽  
Satoru Imahayashi ◽  
Hiroshi Fujie ◽  
Mitsuhiro Takenoyama ◽  
...  

1999 ◽  
Vol 180 (5) ◽  
pp. 1477-1486 ◽  
Author(s):  
Innocent N. Mbawuike ◽  
Kohtaro Fujihashi ◽  
Simonetta DiFabio ◽  
Shigetada Kawabata ◽  
Jerry R. McGhee ◽  
...  

2004 ◽  
Vol 78 (1) ◽  
pp. 206-215 ◽  
Author(s):  
Michael S. Seaman ◽  
Fred W. Peyerl ◽  
Shawn S. Jackson ◽  
Michelle A. Lifton ◽  
Darci A. Gorgone ◽  
...  

ABSTRACT Vaccine-elicited cytotoxic T lymphocytes (CTL) should be long-lived memory cells that can rapidly expand in number following re-exposure to antigen. The present studies were initiated to analyze the ability of plasmid interleukin-12 (IL-12) to augment CTL responses in mice when delivered during the peak phase of an immune response elicited by a plasmid human immunodeficiency virus type 1 gp120 DNA vaccine. Delivery of plasmid IL-12 on day 10 postimmunization resulted in a robust expansion of gp120-specific CD8+ T cells, as measured by tetramer, gamma interferon ELISPOT, and functional-killing assays. Interestingly, this delayed administration of plasmid IL-12 had no significant effect on antigen-specific CD4+-T-cell and antibody responses. Phenotypic analyses suggested that administration of plasmid IL-12 near the time of the peak CTL response activated and expanded antigen-specific effector cells, preventing their loss through apoptosis. However, this IL-12-augmented population of gp120-specific CD8+ T cells did not efficiently expand following gp120 boost immunization, suggesting that these effector cells would be of little utility in expanding to contain a viral infection. Analyses of the phenotypic profile and anatomic distribution of the plasmid IL-12-augmented CTL population indicated that these lymphocytes were primarily effector memory rather than central memory T cells. These observations suggest that CTL-based vaccines should elicit central memory rather than effector memory T cells and illustrate the importance of monitoring the phenotype and functionality of vaccine-induced, antigen-specific CTL.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1474-1479 ◽  
Author(s):  
Marcelo J. Kuroda ◽  
Jörn E. Schmitz ◽  
Aruna Seth ◽  
Ronald S. Veazey ◽  
Christine E. Nickerson ◽  
...  

Major histocompatibility class I–peptide tetramer technology and simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys were used to clarify the distribution of acquired immunodeficiency syndrome virus-specific cytotoxic T lymphocytes (CTL) in secondary lymphoid organs and to assess the relationship between these CTL and the extent of viral replication in the various anatomic compartments. SIVmac Gag epitope-specific CD8+ T cells were evaluated in the spleen, bone marrow, tonsils, thymus, and 5 different lymph node compartments of 4 SIVmac-infected rhesus monkeys. The average percentage of CD8+ T lymphocytes that bound this tetramer in all the different lymph node compartments was similar to that in peripheral blood lymphocytes in individual monkeys. The percentage of CD8+ T cells that bound the tetramer in the thymus was uniformly low in the monkeys. However, the percentage of CD8+ T cells that bound the tetramer in bone marrow and spleen was consistently higher than that seen in lymph nodes and peripheral blood. The phenotypic profile of the tetramer-binding CD8+ T lymphocytes in the different lymphoid compartments was similar, showing a high expression of activation-associated adhesion molecules and a low level expression of naive T-cell–associated molecules. Surprisingly, no correlation was evident between the percentage of tetramer-binding CD8+ T lymphocytes and the magnitude of the cell-associated SIV RNA level in each lymphoid compartment of individual monkeys. These studies suggest that a dynamic process of trafficking may obscure the tendency of CTL to localize in particular regional lymph nodes or that some lymphoid organs may provide milieus that are particularly conducive to CTL expansion.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1474-1479 ◽  
Author(s):  
Marcelo J. Kuroda ◽  
Jörn E. Schmitz ◽  
Aruna Seth ◽  
Ronald S. Veazey ◽  
Christine E. Nickerson ◽  
...  

Abstract Major histocompatibility class I–peptide tetramer technology and simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys were used to clarify the distribution of acquired immunodeficiency syndrome virus-specific cytotoxic T lymphocytes (CTL) in secondary lymphoid organs and to assess the relationship between these CTL and the extent of viral replication in the various anatomic compartments. SIVmac Gag epitope-specific CD8+ T cells were evaluated in the spleen, bone marrow, tonsils, thymus, and 5 different lymph node compartments of 4 SIVmac-infected rhesus monkeys. The average percentage of CD8+ T lymphocytes that bound this tetramer in all the different lymph node compartments was similar to that in peripheral blood lymphocytes in individual monkeys. The percentage of CD8+ T cells that bound the tetramer in the thymus was uniformly low in the monkeys. However, the percentage of CD8+ T cells that bound the tetramer in bone marrow and spleen was consistently higher than that seen in lymph nodes and peripheral blood. The phenotypic profile of the tetramer-binding CD8+ T lymphocytes in the different lymphoid compartments was similar, showing a high expression of activation-associated adhesion molecules and a low level expression of naive T-cell–associated molecules. Surprisingly, no correlation was evident between the percentage of tetramer-binding CD8+ T lymphocytes and the magnitude of the cell-associated SIV RNA level in each lymphoid compartment of individual monkeys. These studies suggest that a dynamic process of trafficking may obscure the tendency of CTL to localize in particular regional lymph nodes or that some lymphoid organs may provide milieus that are particularly conducive to CTL expansion.


Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 1831-1837 ◽  
Author(s):  
Alexander A. Shtil ◽  
Joel G. Turner ◽  
John Durfee ◽  
William S. Dalton ◽  
Hua Yu

Tumor cells that survive initial courses of chemotherapy may do so by acquiring a multidrug-resistant phenotype. This particular mechanism of drug resistance may also confer resistance to physiological effectors of apoptosis that could potentially reduce the efficacy of immune therapies that use these pathways of cell death. We have previously demonstrated high efficacy for a cytokine-based tumor cell vaccine in a murine MPC11 myeloma model. In the present study, the effects of this vaccination were compared in MPC11 cells and their isogenic sublines selected for mdr1/P-glycoprotein (Pgp)-mediated multidrug resistance (MDR). Immunization with MPC11 cells expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-12 (IL-12) led to long-lasting protection of mice against subcutaneous (sc) challenge with both parental cells or their MDR variants. Similarly, immunization with GM-CSF/IL-12–transfected MDR sublines caused rejection of transplantation of both parental cells and the MDR sublines. Whereas MPC11 cells and their MDR variants were resistant to APO-1/CD95/Fas ligand, the immunization generated potent granzyme B/perforin-secreting cytotoxic T lymphocytes (CTLs) that were similarly effective against both parental and isogenic MDR cells. We conclude that MDR mediated bymdr1/Pgp did not interfere with lysis by pore-forming CTLs. Immunotherapy based on pore-forming CTLs may be an attractive approach to the treatment of drug-resistant myeloma.


Sign in / Sign up

Export Citation Format

Share Document