Effects of chronic nicotine exposure on contractile enzyme-histochemical and biochemical properties of fast- and slow-twitch skeletal muscles in the rat

1988 ◽  
Vol 134 (4) ◽  
pp. 519-527 ◽  
Author(s):  
L. LARSSON ◽  
J. ÖRLANDER ◽  
T. ANSVED ◽  
L. EDSTRÖM
2021 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Arrin C. Brooks ◽  
Brandon J. Henderson

While various modalities of chronic nicotine use have been associated with numerous negative consequences to human health, one possible benefit of nicotine exposure has been uncovered. The discovery of an inverse correlation between smoking and Parkinson’s disease, and later Alzheimer’s disease as well, motivated investigation of nicotine as a neuroprotective agent. Some studies have demonstrated that nicotine elicits improvements in cognitive function. The hippocampus, along with the subventricular zone (SVZ), is a distinct brain region that allow for ongoing postnatal neurogenesis throughout adulthood and plays a major role in certain cognitive behaviors like learning and memory. Therefore, one hypothesis underlying nicotine-induced neuroprotection is possible effects on neural stem cells and neural precursor cells. On the other hand, nicotine withdrawal frequently leads to cognitive impairments, particularly in hippocampal-dependent behaviors, possibly suggesting an impairment of hippocampal neurogenesis with nicotine exposure. This review discusses the current body of evidence on nicotine’s effects on neural stem cells and neural progenitors. Changes in neural stem cell proliferation, survival, intracellular dynamics, and differentiation following acute and chronic nicotine exposure are examined.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0150096 ◽  
Author(s):  
Vanessa Meira Ferreira ◽  
Clevia Santos Passos ◽  
Edgar Maquigussa ◽  
Roberto Braz Pontes ◽  
Cassia Toledo Bergamaschi ◽  
...  

2008 ◽  
Vol 439 (2) ◽  
pp. 187-191 ◽  
Author(s):  
Barbara J. Caldarone ◽  
Sarah L. King ◽  
Marina R. Picciotto

1977 ◽  
Vol 55 (12) ◽  
pp. 1241-1243 ◽  
Author(s):  
N. Bégin-Heick ◽  
H. M. C. Heick

The activity of lipoprotein lipase (LPL) in the heart, diaphragm, and soleus muscles was markedly increased in cold-acclimated rats and it was even greater in rats treated with oxytetracycline (OTC) while exposed to cold. Other skeletal muscles studied had low and variable activities which were not significantly increased by cold acclimation or by cold plus OTC treatment. It appears therefore that, apart from the heart and the muscles involved in respiratory movements, LPL activity is primarily associated with those muscles which contain a predominance of slow-twitch oxidative fibers, and that the enzyme in muscle, heart, and diaphragm responds to cold acclimation and cold plus OTC treatment in a parallel fashion in these tissues.


Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S283-S284
Author(s):  
Amanda Guevara ◽  
Zhen Wang ◽  
Jessica L. Caldwell ◽  
Srinu Tapa ◽  
Lena Ngo ◽  
...  

1996 ◽  
Vol 271 (6) ◽  
pp. E1061-E1066 ◽  
Author(s):  
D. Meynial-Denis ◽  
M. Mignon ◽  
A. Miri ◽  
J. Imbert ◽  
E. Aurousseau ◽  
...  

Glutamine synthetase (GS) is a glucocorticoid-inducible enzyme that has a key role for glutamine synthesis in muscle. We hypothesized that the glucocorticoid induction of GS could be altered in aged rats, because alterations in the responsiveness of some genes to glucocorticoids were reported in aging. We compared the glucocorticoid-induced GS in fast-twitch and slow-twitch skeletal muscles (tibialis anterior and soleus, respectively) and heart from adult (age 6-8 mo) and aged (age 22 mo) female rats. All animals received dexamethasone (Dex) in their drinking water (0.77 +/- 0.10 and 0.80 +/- 0.08 mg/day per adult and aged rat, respectively) for 5 days. Dex caused an increase in both GS activity and GS mRNA in fast-twitch and slow-twitch skeletal muscles from adult and aged rats. In contrast, Dex increased GS activity in heart of adult rats, without any concomitant change in GS mRNA levels. Furthermore, Dex did not affect GS activity in aged heart. Thus the responsiveness of GS to an excess of glucocorticoids is preserved in skeletal muscle but not in heart from aged animals.


Sign in / Sign up

Export Citation Format

Share Document