Dietary supplementation with Mannanoligosaccharides (MOS) from Bio-Mos enhances growth parameters and digestive capacity of gilthead sea bream (Sparus aurata)

2010 ◽  
Vol 17 (5) ◽  
pp. 482-487 ◽  
Author(s):  
N. GÜLTEPE ◽  
S. SALNUR ◽  
B. HOŞSU ◽  
O. HISAR
Biology Open ◽  
2017 ◽  
Vol 6 (6) ◽  
pp. 897-908 ◽  
Author(s):  
Leonardo J. Magnoni ◽  
Juan Antonio Martos-Sitcha ◽  
Augusto Queiroz ◽  
Josep Alvar Calduch-Giner ◽  
José Fernando Magalhães Gonçalves ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Annalisa Bosi ◽  
Davide Banfi ◽  
Federico Moroni ◽  
Chiara Ceccotti ◽  
Maria Cecilia Giron ◽  
...  

AbstractAlternative nutrient sources to fishmeal for fish feed, such as insect meals, represent a promising sustainable supply. However, the consequences for fish digestive function have not been exhaustively investigated. In the present study we evaluated the effect of partial fishmeal substitution with 10% Hermetia illucens (Hi10) larvae meal on the neuromuscular function of proximal and distal intestine in gilthead sea bream. In animals fed with insect meal, weight and growth parameters were similar to controls fed with conventional fishmeal. In addition, no anomalies in intestinal gross morphology and no overt signs of inflammation were observed. The gastrointestinal transit was significantly reduced in Hi10 fed animals. In the proximal and distal intestine longitudinal muscle, Hi10 feeding downregulated the excitatory cholinergic and serotoninergic transmission. Sodium nitroprusside-induced inhibitory relaxations increased in the proximal intestine and decreased in the distal intestine after Hi10 meal. Changes in the excitatory and inhibitory components of peristalsis were associated with adaptive changes in the chemical coding of both proximal and distal intestine myenteric plexus. However, these neuromuscular function alterations were not associated with considerable variations in morphometric growth parameters, suggesting that 10% Hi meal may represent a tolerable alternative protein source for gilthead sea bream diets.


2018 ◽  
Vol 127 (3) ◽  
pp. 201-211 ◽  
Author(s):  
M Moreira ◽  
M Herrera ◽  
P Pousão-Ferreira ◽  
JI Navas Triano ◽  
F Soares

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 362
Author(s):  
Amparo Picard-Sánchez ◽  
M. Carla Piazzon ◽  
Itziar Estensoro ◽  
Raquel Del Pozo ◽  
Nahla Hossameldin Ahmed ◽  
...  

Enterospora nucleophila is a microsporidian enteroparasite that infects mainly the intestine of gilthead sea bream (Sparus aurata), leading to an emaciative syndrome. Thus far, the only available information about this infection comes from natural outbreaks in farmed fish. The aim of the present study was to determine whether E. nucleophila could be transmitted horizontally using naturally infected fish as donors, and to establish an experimental in vivo procedure to study this host–parasite model without depending on natural infections. Naïve fish were exposed to the infection by cohabitation, effluent, or intubated either orally or anally with intestinal scrapings of donor fish in four different trials. We succeeded in detecting parasite in naïve fish in all the challenges, but the infection level and the disease signs were always milder than in donor fish. The parasite was found in peripheral blood of naïve fish at 4 weeks post-challenge (wpc) in oral and effluent routes, and up to 12 wpc in the anal transmission trial. Molecular diagnosis detected E. nucleophila in other organs besides intestine, such as gills, liver, stomach or heart, although the intensity was not as high as in the target tissue. The infection tended to disappear through time in all the challenge routes assayed, except in the anal infection route.


Aquaculture ◽  
2021 ◽  
pp. 736605
Author(s):  
A. Toffan ◽  
L. Biasini ◽  
T. Pretto ◽  
M. Abbadi ◽  
A. Buratin ◽  
...  

1997 ◽  
Vol 287 (3) ◽  
pp. 535-540 ◽  
Author(s):  
Josep Alvar Calduch-Giner ◽  
Ariadna Sitjà-Bobadilla ◽  
Pilar Alvarez-Pellitero ◽  
Jaume Pérez-Sánchez

Aquaculture ◽  
2006 ◽  
Vol 261 (4) ◽  
pp. 1151-1155 ◽  
Author(s):  
G. Rigos ◽  
I. Nengas ◽  
M. Alexis

Sign in / Sign up

Export Citation Format

Share Document