Components of the NADPH oxidase of phagocytic cells and their abnormality in the molecular pathology of Chronic Granulomatous Disease (CGD)

1993 ◽  
Vol 23 (s1) ◽  
pp. 37-37
Author(s):  
Anthony W Segal
PEDIATRICS ◽  
1991 ◽  
Vol 88 (1) ◽  
pp. 183-185
Author(s):  
SHIGENOBU UMEKI

To the Editor.— Such phagocytic cells as neutrophils and macrophages are crucial elements in the host defense against bacterial [See table in the PDF file] and fungal infections. Microbicidal activity depends to a large extent on NADPH oxidase system, which can be activated by stimuli (bacteria, fungi) and which generates the superoxide anion and other highly reactive forms of reduced oxygen.1,2 The neutrophil NADPH oxidase system is composed functionally of membrane-bound catalytic components (which consist of at least two constituents, the low potential cytochrome b5583-5 and flavoprotein5) and soluble cytosolic components6,7 which participate as either catalytic or regulatory elements.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 409-409
Author(s):  
Marion G. Ott ◽  
Stefan Stein ◽  
Ulrike Koehl ◽  
Andrea Schilz ◽  
Klaus Kuhlcke ◽  
...  

Abstract Chronic Granulomatous Disease (CGD) is a primary immunodeficiency in which phagocytic cells of affected patients have impaired antimicrobial activity due to a defect in the production of reactive oxygen species (ROS). CGD is caused by mutations in any one of four genes encoding for the subunits of the NADPH oxidase complex. CGD is an ideal target for a gene replacement therapy, since females carriers of CGD with as low as 5-10% NADPH oxidase activity are healthy. Based on our preclinical work, we initiated a Phase I/II trial in January 2004. Two X-CGD patients, 26 and 25 years old, were recruited based on their long history of recurrent and life-threatening bacterial and fungal infections. G-CSF mobilized CD34+ cells were transduced with a monocistronic gp91phox retroviral vector. The transduction efficiency was 45% for Pat.1 and 40% for Pat. 2. The number of CD34+ cells reinfused was 1.2x10e7 per kg for Pat.1 and 0.9x10e7 per kg for Pat. 2. Before reinfusion, the patients were conditioned with liposomal busulphan given i.v. at a dose of 4 mg/kg at two consecutive days, starting at day -3. The treatment was well tolerated and no adverse effects have been observed. Neutrophil counts declined to less than 100 cells per μl at day 15 post reinfusion in both patients and recovered to more than 500 cells per μl at day 30 for Pat. 1 and day 20 for Pat. 2. A significant fraction of gene marked cells has been detected in peripheral blood of both patients since day +21. Similarly, therapeutically relevant levels of ROS production have been observed. In conclusion, the protocol we have used allows for stable engraftment of gene transduced hematopoietic cells under conditions in which gene corrected cells lack a selective advantage over non-corrected cells.


2016 ◽  
pp. fuw042 ◽  
Author(s):  
Helene Buvelot ◽  
Klara M. Posfay-Barbe ◽  
Patrick Linder ◽  
Jacques Schrenzel ◽  
Karl-Heinz Krause

1996 ◽  
Vol 315 (2) ◽  
pp. 571-575 ◽  
Author(s):  
Colin D. PORTER ◽  
KURIBAYASHI KURIBAYASHI ◽  
Mohamed H. PARKAR ◽  
Dirk ROOS ◽  
Christine KINNON

NADPH oxidase cytochrome b558 consists of two subunits, gp91-phox and p22-phox, defects of which result in chronic granulomatous disease (CGD). The nature of the interaction between these subunits has yet to be determined. Absence of p22-phox in autosomal CGD patient-derived B-cell lines results in detectable levels of an incompletely glycosylated gp91-phox precursor. We have detected this same precursor species in four cell lines from patients with the X-linked form of the disease due to mutations in gp91-phox. Such mutations should delineate regions of gp91-phox important for its biosynthesis, including stable association with p22-phox. One mutation mapped to the putative FAD-binding domain, one mapped to a potential haem-binding domain, and two involved the region encoded by exon 3.


1995 ◽  
Vol 182 (3) ◽  
pp. 751-758 ◽  
Author(s):  
S H Jackson ◽  
J I Gallin ◽  
S M Holland

Chronic granulomatous disease (CGD) is caused by a congenital defect in phagocyte reduced nicotinamide dinucleotide phosphate (NADPH) oxidase production of superoxide and related species. It is characterized by recurrent life-threatening bacterial and fungal infections and tissue granuloma formation. We have created a mouse model of CGD by targeted disruption of p47phox, one of the genes in which mutations cause human CGD. Identical to the case in human CGD, leukocytes from p47phox-/- mice produced no superoxide and killed staphylococci ineffectively. p47phox-/- mice developed lethal infections and granulomatous inflammation similar to those encountered in human CGD patients. This model mirrors human CGD and confirms a critical role for the phagocyte NADPH oxidase in mammalian host defense.


2019 ◽  
Vol 143 (2) ◽  
pp. 782-785.e1 ◽  
Author(s):  
David C. Thomas ◽  
Louis-Marie Charbonnier ◽  
Andrea Schejtman ◽  
Hasan Aldhekri ◽  
Eve L. Coomber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document