scholarly journals Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations

2004 ◽  
Vol 158 (2) ◽  
pp. 695-711 ◽  
Author(s):  
M. Chlieh ◽  
J. B. de Chabalier ◽  
J. C. Ruegg ◽  
R. Armijo ◽  
R. Dmowska ◽  
...  
Author(s):  
Ilias Lazos ◽  
Sotirios Sboras ◽  
Christos Pikridas ◽  
Spyros Pavlides ◽  
Alexandros Chatzipetros

1983 ◽  
Vol 73 (4) ◽  
pp. 1203-1224
Author(s):  
J. Langbein ◽  
A. McGarr ◽  
M. J. S. Johnston ◽  
P. W. Harsh

abstract A geodetic trilateration network comprising 54 baselines was established around the northern part of the Imperial fault beginning 12 days after the Imperial Valley earthquake of 15 October 1979, and the line lengths were repeatedly observed during the following 110 days. During the observational period, there was an average of about 10 cm of dextral postseismic fault slip. Geodetic data in conjunction with alignment-array measurements indicate that the postseismic slip U at time t following the main shock is well described by U (t) = (10.96 ± 0.12) cm log(t/1.75 day + 1), a result that implies that it will be approximately 9 to 10 yr before the rate of postseismic displacement diminishes to the ambient rate of creep of 0.5 cm/a. The postseismic strain changes are localized to the east side of the Imperial fault in the southern part of the Mesquite Lake basin, where significant north-south extension occurred at an average rate of 2.7 ± 0.3 × 10−5/a during the observational period. These changes are compatible with dextral fault slip within the top 5 km of the fault.


The subduction zone under the east coast of the North Island of New Zealand comprises, from east to west, a frontal wedge, a fore-arc basin, uplifted basement forming the arc and the Central Volcanic Region. Reconstructions of the plate boundary zone for the Cainozoic from seafloor spreading data require the fore-arc basin to have rotated through 60° in the last 20 Ma which is confirmed by palaeomagnetic declination studies. Estimates of shear strain from geodetic data show that the fore-arc basin is rotating today and that it is under extension in the direction normal to the trend of the plate boundary zone. The extension is apparently achieved by normal faulting. Estimates of the amount of sediments accreted to the subduction zone exceed the volume of the frontal wedge: underplating by the excess sediments is suggested to be the cause of late Quaternary uplift of the fore-arc basin. Low-temperature—high-pressure metamorphism may therefore be occurring at depth on the east coast and high-temperature—low-pressure metamorphism is probable in the Central Volcanic Region. The North Island of New Zealand is therefore a likely setting for a paired metamorphic belt in the making.


Tectonics ◽  
2021 ◽  
Author(s):  
T. Greenfield ◽  
A. C. Copley ◽  
C. Caplan ◽  
P. Supendi ◽  
S. Widiyantoro ◽  
...  

Author(s):  
J.F. Dewey ◽  
J.F. Casey

Abstract. The narrow, short-lived Taconic-Grampian Orogen occurs along the north-western margin of the Appalachian-Caledonian Belt from, at least, Alabama to Scotland, a result of the collision of a series of early Ordovician oceanic island arcs with the rifted margin of Laurentia. The present distribution of Taconian-Grampian ophiolites is unlikely to represent a single fore-arc from Alabama to Scotland colliding at the same time with the continental margin along its whole length; more likely is that there were several Ordovician arcs with separate ophiolites. The collision suture is at the thrust base of obducted fore-arc ophiolite complexes, and obduction distance was about two hundred kilometres. Footwalls to the ophiolites are, sequentially towards the continent, continental margin rift sediments and volcanics and overlying rise sediments, continental shelf slope carbonates, and sediments of foreland flexural basins. The regionally-flat obduction thrust complex between the ophiolite and the rifted Laurentian margin is the collision suture between arc and continent. A particular problem in drawing tectonic profiles across the Taconic-Grampian Zone is several orogen-parallel major strike-slip faults, both sinistral and dextral, of unknown displacements, which may juxtapose portions of different segments. In western Newfoundland, most of the Grenville basement beneath the Fleur-de-Lys metamorphic complex (Neoproterozoic to early Ordovician meta-sediments) was eclogitised during the Taconic Orogeny and separated by a massive shear zone from the overlying Fleur-de-Lys, which was metamorphosed at the same time but in the amphibolite facies. The shear zone continued either to a distal intracontinental “subduction zone” or to the main, sub-fore-arc, subduction zone beneath which the basement slipped down to depths of up to seventy kilometres at the same time as the ophiolite sheet and its previously-subcreted metamorphic sole were being obducted above. Subsequently, the eclogitised basement was returned to contact with the amphibolite-facies cover by extensional detachment eduction, possibly enhanced by subduction channel flow, which may have been caused by slab break-off and extension during subduction polarity flip. Although the basal ophiolite obduction thrust complex and the Fleur-de-Lys-basement subduction-eduction surfaces must have been initially gently-dipping to sub-horizontal, they were folded and broken by thrusts during late Taconian, late Ordovician Salinic-Mayoian, and Acadian shortening.


2021 ◽  
Author(s):  
Yani Najman ◽  
Shihu Li

<p>Knowledge of the timing of India-Asia collision and associated Tethyan closure in the region is critical to advancement of models of crustal deformation.   One of a number of methods traditionally used to constrain the time of India-Asia collision is the detrital approach. This involves determination of when Asian material first arrived on the Indian plate, with most recent estimates documenting collision at ca 60 Ma (e.g. Hu et al, Earth Science Reviews 2016). However, more recently, such data and a number of other approaches providing data previously used to determine the timing of India-Asia collision, have been controversially re-interpreted to represent collision of India with an Island arc, with terminal India-Asia collision occurring significantly later, ca 34 Ma (e.g. Aitchison et al, J. Geophysical Research 2007). Clearly, for the detrital approach to advance the debate, discrimination between Asian detritus and arc detritus is required. Such a discrimination was proposed in Najman et al (EPSL 2017), dating the timing of terminal India-Asia collision at 54 Ma. However, this evidence is far from universally accepted.  For example, such data are at variance with various palaeomagnetic studies which suggest that an oceanic Transtethyan subduction zone existed 600-2300 kms south of the Eurasian margin in the Paleocene  (e.g. Martin et al, PNAS 2020) and therefore these authors propose different explanations to explain the detrital data.  This presentation will discuss the uncertainties associated with our current understanding of the timing of India-Asia collision.</p>


2021 ◽  
Author(s):  
Craig R Martin ◽  
Oliver Jagoutz ◽  
Rajeev Upadhyay ◽  
Leigh H Royden ◽  
Michael P Eddy ◽  
...  

<p>The classical model for the collision between India and Eurasia, which resulted in the formation of the Himalayan orogeny, is a single-stage continent-continent collision event at around 55 – 50 Ma. However, it has also been proposed that the India-Eurasia collision was a multi-stage process involving an intra-oceanic Trans-Tethyan subduction zone south of the Eurasian margin. We present paleomagnetic data constraining the location the Kohistan-Ladakh arc, a remnant of this intra-oceanic subduction zone, to a paleolatitude of 8.1 ± 5.6 °N between 66 – 62 Ma. Comparing this result with new paleomagnetic data from the Eurasian Karakoram terrane, and previous paleomagnetic reconstructions of the Lhasa terrane reveals that the Trans-Tethyan Subduction zone was situated 600 – 2,300 km south of the contemporaneous Eurasian margin at the same time as the first ophiolite obduction event onto the northern Indian margin. Our results confirm that the collision was a multistage process involving at least two subduction systems. Collision began with docking between India and the Trans-Tethyan subduction zone in the Late Cretaceous and Early Paleocene, followed by the India-Eurasia collision in the mid-Eocene. The final stage of India-Eurasia collision occurred along the Shyok-Tsangpo suture zone, rather than the Indus-Tsangpo. The addition of the Kshiroda oceanic plate, north of India after the Paleocene reconciles the amount of convergence between India and Eurasia with the observed shortening across the India–Eurasia collision system. Our results constrain the total post-collisional convergence accommodated by crustal deformation in the Himalaya to 1,350 – 2,150 km, and the north-south extent of the northwestern part of Greater India to < 900 km.</p>


2020 ◽  
Vol 791 ◽  
pp. 228504 ◽  
Author(s):  
Claudio Petrini ◽  
Taras Gerya ◽  
Viktoriya Yarushina ◽  
Ylona van Dinther ◽  
James Connolly ◽  
...  

2014 ◽  
Vol 19 (1) ◽  
pp. 273-273
Author(s):  
Athanassios Ganas ◽  
Zafeiria Roumelioti ◽  
Vassilios Karastathis ◽  
Konstantinos Chousianitis ◽  
Alexandra Moshou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document