SHORT COMMUNICATION: Do farmers reduce genetic diversity when they domesticate tropical trees? A case study from Amazonia

2005 ◽  
Vol 14 (2) ◽  
pp. 497-501 ◽  
Author(s):  
P. M. HOLLINGSWORTH ◽  
I. K. DAWSON ◽  
W. P. GOODALL-COPESTAKE ◽  
J. E. RICHARDSON ◽  
J. C. WEBER ◽  
...  
2002 ◽  
Vol 78 (4) ◽  
pp. 539-549 ◽  
Author(s):  
Paul D Anderson ◽  
John C Zasada ◽  
Glen W Erickson ◽  
Zigmond A Zasada

A white pine (Pinus strobus L.) stand at the western margin of the species range, approximately 125 years of age at present, was thinned in 1953 from 33.5 m2 ha-1 to target residual basal areas of 18.4, 23.0, 27.5, and 32.1 m2 ha-1 . Repeated measurement over the following 43-years indicated that the greatest total volume production and the greatest number of large diameter trees occurred in the unit of highest residual density. Over time, the distribution of stems was predominantly random although mortality between 1979 and 1996 resulted in a tendency for clumping in the 23.0 and 27.5 m2 ha-1 treatments. DNA analysis indicated that thinning intensity had little effect on the genetic diversity of residual white pine. This study suggests that mature white pine stands in northern Minnesota may be managed at relatively high densities without loss of productivity. However, regardless of overstory density, there was little or no white pine regeneration occurring in this stand. Key words: thinning, growth, genetic diversity, molecular markers, spatial pattern, regeneration


2012 ◽  
Vol 92 (3) ◽  
pp. 421-425 ◽  
Author(s):  
Hong Wang ◽  
Yong He ◽  
Budong Qian ◽  
Brian McConkey ◽  
Herb Cutforth ◽  
...  

Wang, H., He, Y., Qian, B., McConkey, B., Cutforth, H., McCaig, T., McLeod, G., Zentner, R., DePauw, R., Lemke, R., Brandt, K., Liu, T., Qin, X., White, J., Hunt, T. and Hoogenboom, G. 2012. Short Communication: Climate change and biofuel wheat: A case study of southern Saskatchewan. Can. J. Plant Sci. 92: 421–425. This study assessed potential impacts of climate change on wheat production as a biofuel crop in southern Saskatchewan, Canada. The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) was used to simulate biomass and grain yield under three climate change scenarios (CGCM3 with the forcing scenarios of IPCC SRES A1B, A2 and B1) in the 2050s. Synthetic 300-yr weather data were generated by the AAFC stochastic weather generator for the baseline period (1961–1990) and each scenario. Compared with the baseline, precipitation is projected to increase in every month under all three scenarios except in July and August and in June for A2, when it is projected to decrease. Annual mean air temperature is projected to increase by 3.2, 3.6 and 2.7°C for A1B, A2 and B1, respectively. The model predicted increases in biomass by 28, 12 and 16% without the direct effect of CO2 and 74, 55 and 41% with combined effects (climate and CO2) for A1B, A2 and B1, respectively. Similar increases were found for grain yield. However, the occurrence of heat shock (>32°C) will increase during grain filling under the projected climate conditions and could cause severe yield reduction, which was not simulated by DSSAT-CSM. This implies that the future yield under climate scenarios might have been overestimated by DSSAT-CSM; therefore, model modification is required. Several measures, such as early seeding, must be taken to avoid heat damages and take the advantage of projected increases in temperature and precipitation in the early season.


2008 ◽  
Vol 254 (2) ◽  
pp. 225-232 ◽  
Author(s):  
M. Valbuena-Carabaña ◽  
S.C. González-Martínez ◽  
L. Gil

2020 ◽  
Vol 21 (8) ◽  
Author(s):  
M. DANIE AL MALIK ◽  
NI PUTU DIAN PERTIWI ◽  
ANDRIANUS SEMBIRING ◽  
NI LUH ASTRIA YUSMALINDA ◽  
ENEX YUNIARTI NINGSIH ◽  
...  

Abstract. Al Malik MD, Pertiwi NPD, Sembiring A, Yusmalinda NLA, Ningsing EY, Astarini IA. 2020. Short Communication: Genetic structure of Longtail Tuna Thunnus tonggol (Bleeker, 1851) in Java Sea, Indonesia. Biodiversitas 21: 3637-3643. Thunnus tonggol (Longtail Tuna) is an economically important fish found in Indonesia waters, however, the information regarding this fish is lacking. Known to be a neritic fish and found in shallow water, Java Sea is one of the ideal habitats for T. tonggol species. Due to high fishing rates activities in Java Sea, a better management plan to ensure the conservation and fisheries sustainability around this area is needed, especially to protect T. tonggol population. In order to complete the Indonesian tuna data, we aim to study the diversity and genetic structure of T. tonggol in Java Sea at three different locations; i.e. Semarang, Banjarmasin, and Jakarta. In this study, population genetic methods with the marker of mitochondrial DNA (mtDNA) control region were used in population structure analysis. A total of 115 specimens were collected from the fish market around the area of study locations and amplified using polymerase chain reaction (PCR) and sequenced using Sanger methods. The result showed genetic diversity (Hd) value of 0.99366, and nucleotide diversity (π) value of 0.01906. Both of these values indicated high genetic diversity. Population analyses using Analysis of Molecular Variance (AMOVA) showed nonsignificant differences between the three populations of study (mixing population), with the ΦST value of 0,00375 (p-value > 0.05). Based on this result, the fisheries management for T. tonggol in Java Sea needs to be managed as one single population management.


1992 ◽  
Vol 167 (1) ◽  
pp. 267-275 ◽  
Author(s):  
RORY P. WILSON ◽  
JOHN COOPER ◽  
JOACHIM PLÖTZ
Keyword(s):  

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129295 ◽  
Author(s):  
Xiao-cui Huang ◽  
Xiu-qin Ci ◽  
John G. Conran ◽  
Jie Li

Crop Science ◽  
2013 ◽  
Vol 53 (6) ◽  
pp. 2363-2373 ◽  
Author(s):  
Ibrahim El-basyoni ◽  
P. Stephen Baenziger ◽  
Ismail Dweikat ◽  
Dong Wang ◽  
Kent Eskridge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document