Using DArT Markers to Monitor Genetic Diversity throughout Selection: A Case Study in Nebraska's Winter Wheat Breeding Nurseries

Crop Science ◽  
2013 ◽  
Vol 53 (6) ◽  
pp. 2363-2373 ◽  
Author(s):  
Ibrahim El-basyoni ◽  
P. Stephen Baenziger ◽  
Ismail Dweikat ◽  
Dong Wang ◽  
Kent Eskridge ◽  
...  
2020 ◽  
pp. 41-45
Author(s):  
S. G. Golovko ◽  
N. V. Kalinina ◽  
A. A. Yatsyna ◽  
N. N. Vozhzhova ◽  
E. V. Ionova

The improvement of genetic diversity and acceleration of breeding process are the most important tasks in wheat breeding. In vitro biotechnological methods are of practical interest for breeding process. The current paper has considered the effects of genotypes and nutritious medium on the formation of regenerants. The purpose of the research was to study the ability to androgenesis in winter soft wheat anthers and to identify promising winter soft wheat genotypes. The estimation of the ability to androgenesis was carried out among ten winter wheat samples. 8711 anthers were planted on medium of N6 and PII induction; the 190-2 medium was used for regeneration. As a result of the study, it was found that the process of neoplasms occurrence depends both on the variant of the nutrient medium and on the chosen genotype. It has been proven that the most favorable medium for the cultivation of winter soft wheat anthers is medium N6. It was found that the maximum percentage of neoplasms (5.21%) from winter soft wheat anthers was recorded in the sample “595/13”. It was found that the samples “595/13” (9 plants) and “Niva Dona” (6 plants) developed by the FSBSI “Agricultural Research Center “Donskoy” showed the highest responsiveness to the formation of calluses and plants-regenerants. There were obtained 6 green regenerants and 3 albino forms from the pollen callus of the sample “595/13” and 4 green regenerants and 2 albino regenerants from the sample “Niva Dona”.


Genome ◽  
2011 ◽  
Vol 54 (5) ◽  
pp. 419-430 ◽  
Author(s):  
Muge Sayar-Turet ◽  
Susanne Dreisigacker ◽  
Hans-J. Braun ◽  
Arne Hede ◽  
Ruth MacCormack ◽  
...  

The genetic diversity within wheat breeding programs across Turkey and Kazakhstan was compared with a selection of European cultivars that represented the genetic diversity across eight European countries and six decades of wheat breeding. To focus the measure of genetic diversity on that relevant to disease-resistant phenotypes, nucleotide-binding-site (NBS) profiling was used to detect polymorphisms associated with the NBS motifs found within the NBS – leucine-rich repeat (LRR) class of resistance (R) genes. Cereal-specific NBS primers, designed specifically to the conserved NBS motifs found within cereal R-genes, provided distinct NBS profiles. Although the genetic diversity associated with NBS motifs was only slightly higher within the Eastern wheat genotypes, the NBS profiles produced by Eastern and European wheat lines differed considerably. Structure analysis divided the wheat genotypes into four groups, which compared well with the origin of the wheat genotypes. The highest levels of genetic diversity were seen for the wheat genotypes from the Genetic Resource Collection held in Ankara, Turkey, as wheat genotypes within breeding programs were genetically more similar. The wheat genotypes from Kazakhstan were the most similar to the European cultivars, reflecting the significant number of eastern European cultivars used in the breeding program in Kazakhstan. In general, the NBS profiles suggested that NBS–LRR R-gene usage in winter wheat breeding in Turkey and Kazakhstan differed from that deployed in European cultivars.


CYTOLOGIA ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. 485-500 ◽  
Author(s):  
Uzma Hanif ◽  
Awais Rasheed ◽  
Alvina Gul Kazi ◽  
Fakiha Afzal ◽  
Maria Khalid ◽  
...  

2002 ◽  
Vol 78 (4) ◽  
pp. 539-549 ◽  
Author(s):  
Paul D Anderson ◽  
John C Zasada ◽  
Glen W Erickson ◽  
Zigmond A Zasada

A white pine (Pinus strobus L.) stand at the western margin of the species range, approximately 125 years of age at present, was thinned in 1953 from 33.5 m2 ha-1 to target residual basal areas of 18.4, 23.0, 27.5, and 32.1 m2 ha-1 . Repeated measurement over the following 43-years indicated that the greatest total volume production and the greatest number of large diameter trees occurred in the unit of highest residual density. Over time, the distribution of stems was predominantly random although mortality between 1979 and 1996 resulted in a tendency for clumping in the 23.0 and 27.5 m2 ha-1 treatments. DNA analysis indicated that thinning intensity had little effect on the genetic diversity of residual white pine. This study suggests that mature white pine stands in northern Minnesota may be managed at relatively high densities without loss of productivity. However, regardless of overstory density, there was little or no white pine regeneration occurring in this stand. Key words: thinning, growth, genetic diversity, molecular markers, spatial pattern, regeneration


2015 ◽  
Vol 153 (8) ◽  
pp. 1353-1364 ◽  
Author(s):  
C. Y. ZHENG ◽  
J. CHEN ◽  
Z. W. SONG ◽  
A. X. DENG ◽  
L. N. JIANG ◽  
...  

SUMMARYTen leading varieties of winter wheat released during 1950–2009 in North China were tested in a free-air temperature increase (FATI) facility. The FATI facility mimicked the local air temperature pattern well, with an increase of 1·1 °C in the daily mean temperature. For all the tested varieties, warming caused a significant reduction in the total length of wheat growth period by 5 days and especially in the pre-anthesis period, where it was reduced by 9 days. However, warming increased wheat biomass production and grain yield by 8·4 and 11·4%, respectively, on an average of all the tested varieties. There was no significant difference in the warming-led reduction in the entire growth period among the tested varieties. Interestingly, the warming-led increments in biomass production and grain yield increased along with the variety release year. Significantly higher warming-led increases in post-anthesis biomass production and 1000-grain weight were found in the new varieties compared to the old ones. Meanwhile, a significant improvement in plant productivity was noted due to wheat breeding during the past six decades, while no significant difference in the length of entire growth period was found among the varieties released in different eras. The results demonstrate that historical wheat breeding might have enhanced winter wheat productivity and adaptability through exploiting the positive effects rather than mitigating the negative impacts of warming on wheat growth in North China.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shamseldeen Eltaher ◽  
P. Stephen Baenziger ◽  
Vikas Belamkar ◽  
Hamdy A. Emara ◽  
Ahmed A. Nower ◽  
...  

Abstract Background Improving grain yield in cereals especially in wheat is a main objective for plant breeders. One of the main constrains for improving this trait is the G × E interaction (GEI) which affects the performance of wheat genotypes in different environments. Selecting high yielding genotypes that can be used for a target set of environments is needed. Phenotypic selection can be misleading due to the environmental conditions. Incorporating information from phenotypic and genomic analyses can be useful in selecting the higher yielding genotypes for a group of environments. Results A set of 270 F3:6 wheat genotypes in the Nebraska winter wheat breeding program was tested for grain yield in nine environments. High genetic variation for grain yield was found among the genotypes. G × E interaction was also highly significant. The highest yielding genotype differed in each environment. The correlation for grain yield among the nine environments was low (0 to 0.43). Genome-wide association study revealed 70 marker traits association (MTAs) associated with increased grain yield. The analysis of linkage disequilibrium revealed 16 genomic regions with a highly significant linkage disequilibrium (LD). The candidate parents’ genotypes for improving grain yield in a group of environments were selected based on three criteria; number of alleles associated with increased grain yield in each selected genotype, genetic distance among the selected genotypes, and number of different alleles between each two selected parents. Conclusion Although G × E interaction was present, the advances in DNA technology provided very useful tools and analyzes. Such features helped to genetically select the highest yielding genotypes that can be used to cross grain production in a group of environments.


Sign in / Sign up

Export Citation Format

Share Document