scholarly journals RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli

2006 ◽  
Vol 62 (4) ◽  
pp. 1181-1190 ◽  
Author(s):  
Jean-François Jacques ◽  
Soojin Jang ◽  
Karine Prévost ◽  
Guillaume Desnoyers ◽  
Maxime Desmarais ◽  
...  
2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Ananya Sen ◽  
Yidan Zhou ◽  
James A. Imlay

ABSTRACT Hydrogen peroxide (H2O2) is formed in natural environments by both biotic and abiotic processes. It easily enters the cytoplasms of microorganisms, where it can disrupt growth by inactivating iron-dependent enzymes. It also reacts with the intracellular iron pool, generating hydroxyl radicals that can lethally damage DNA. Therefore, virtually all bacteria possess H2O2-responsive transcription factors that control defensive regulons. These typically include catalases and peroxidases that scavenge H2O2. Another common component is the miniferritin Dps, which sequesters loose iron and thereby suppresses hydroxyl-radical formation. In this study, we determined that Escherichia coli also induces the ClpS and ClpA proteins of the ClpSAP protease complex. Mutants that lack this protease, plus its partner, ClpXP protease, cannot grow when H2O2 levels rise. The growth defect was traced to the inactivity of dehydratases in the pathway of branched-chain amino acid synthesis. These enzymes rely on a solvent-exposed [4Fe-4S] cluster that H2O2 degrades. In a typical cell the cluster is continuously repaired, but in the clpSA clpX mutant the repair process is defective. We determined that this disability is due to an excessively small iron pool, apparently due to the oversequestration of iron by Dps. Dps was previously identified as a substrate of both the ClpSAP and ClpXP proteases, and in their absence its levels are unusually high. The implication is that the stress response to H2O2 has evolved to strike a careful balance, diminishing iron pools enough to protect the DNA but keeping them substantial enough that critical iron-dependent enzymes can be repaired. IMPORTANCE Hydrogen peroxide mediates the toxicity of phagocytes, lactic acid bacteria, redox-cycling antibiotics, and photochemistry. The underlying mechanisms all involve its reaction with iron atoms, whether in enzymes or on the surface of DNA. Accordingly, when bacteria perceive toxic H2O2, they activate defensive tactics that are focused on iron metabolism. In this study, we identify a conundrum: DNA is best protected by the removal of iron from the cytoplasm, but this action impairs the ability of the cell to reactivate its iron-dependent enzymes. The actions of the Clp proteins appear to hedge against the oversequestration of iron by the miniferritin Dps. This buffering effect is important, because E. coli seeks not just to survive H2O2 but to grow in its presence.


2007 ◽  
Vol 189 (19) ◽  
pp. 7112-7126 ◽  
Author(s):  
Damien Leduc ◽  
Aurélia Battesti ◽  
Emmanuelle Bouveret

ABSTRACT In response to iron limitation, the siderophore enterobactin is synthesized and secreted by Escherichia coli. Its biosynthesis is performed by a series of enzymes encoded by the Ent gene cluster. Among the genes of this cluster, ybdB has not been implicated in enterobactin production to date. We demonstrate here an in vivo role for the hotdog protein EntH (YbdB) in the optimal production of enterobactin. Indeed, we showed that EntH is a thioesterase specifically produced under iron limitation conditions. Furthermore, EntH interacts specifically with the aryl carrier protein (ArCP) domain of EntB, a crucial bifunctional enzyme of the enterobactin biosynthesis pathway and a potential target of EntH thioesterase activity. A strain devoid of EntH is impaired for growth under iron limitation associated with the presence of the salicylate inhibitor, correlating with the diminution of enterobactin production under these conditions. Normal growth and enterobactin production are restored upon expression of entH in trans. Inversely, unnecessary overproduction of EntH provokes a fall of the quantity of siderophore produced under iron starvation conditions. Our findings point to a proofreading role for EntH during biosynthesis of enterobactin in vivo. EntH thioesterase activity could be required for cleaving wrongly charged molecules on the carrier protein EntB. This is the first description of such a role in the optimization of a nonribosomal biosynthesis pathway for a protein of the hotdog superfamily.


2002 ◽  
Vol 368 (2) ◽  
pp. 517-526 ◽  
Author(s):  
Ilka LEHNEN-BEYEL ◽  
Herbert de GROOT ◽  
Ursula RAUEN

It has recently been shown that an increase in the cellular chelatable iron pool is sufficient to cause cell damage. To further characterize this kind of injury, we artificially enhanced the chelatable iron pool in L929 mouse fibroblasts using the highly membrane-permeable complex Fe(III)/8-hydroxyquinoline. This iron complex induced a significant oxygen-dependent loss of viability during an incubation period of 5h. Surprisingly, the addition of d-glucose strongly enhanced this toxicity whereas no such effect was exerted by l-glucose and 2-deoxyglucose. The assumption that this increase in toxicity might be due to an enhanced availability of reducing equivalents formed during the metabolism of d-glucose was supported by NAD(P)H measurements which showed a 1.5—2-fold increase in the cellular NAD(P)H content upon addition of d-glucose. To assess the influence of this enhanced cellular reducing capacity on iron valence we established a new method to measure the reduction rate of iron based on the fluorescent iron(II) indicator PhenGreen SK. We could show that the rate of intracellular iron reduction was more than doubled in the presence of d-glucose. A similar acceleration was achieved by adding the reducing agents ascorbate and glutathione (the latter as membrane-permeable ethyl ester). Glutathione ethyl ester, as well as the thiol reagent N-acetylcysteine, also caused a toxicity increase comparable with d-glucose. These results suggest an enhancement of iron toxicity by d-glucose via an accelerated (re-)reduction of iron with NAD(P)H serving as central electron provider and ascorbate, glutathione or possibly NAD(P)H itself as final reducing agent.


1974 ◽  
Vol 23 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Joseph Greenberg ◽  
Leonard J. Berends ◽  
John Donch ◽  
Michael H. L. Green

SUMMARYPAM 26, a radiation-sensitive mutant ofEscherichia colistrain B, is described. Its properties are attributable to a mutation in a gene,exrB, which is cotransducible withmalB. It differs fromuvrA(alsomalB-linked) derivatives of strain B in being sensitive to 1-methyl-3-nitro-1-nitroso-guanidine and γ-radiation, and in being able to reactivate UV-irradiated phage T3. It differs fromexrA(alsomalB-linked) derivatives of strain B in forming filaments during the course of normal growth as well as after irradiation. WhenexrBwas transduced into a K12 (lon+) strain, filaments did not form spontaneously. Three-point transductions established the order of markers asmet A malB exrB. Based on an analysis of the frequency of wild-type recombinants in a reciprocal transduction betweenexrAandexrBstrains, it was inferred that they are not isogenic and that the order of markers ismalB exrA exrB.


RNA Biology ◽  
2017 ◽  
Vol 14 (2) ◽  
pp. 206-218 ◽  
Author(s):  
Emiko Noro ◽  
Masaru Mori ◽  
Gakuto Makino ◽  
Yuki Takai ◽  
Sumiko Ohnuma ◽  
...  

2020 ◽  
Vol 295 (46) ◽  
pp. 15454-15463 ◽  
Author(s):  
Chelsey R. Fontenot ◽  
Homyra Tasnim ◽  
Kathryn A. Valdes ◽  
Codrina V. Popescu ◽  
Huangen Ding

The ferric uptake regulator (Fur) is a global transcription factor that regulates intracellular iron homeostasis in bacteria. The current hypothesis states that when the intracellular “free” iron concentration is elevated, Fur binds ferrous iron, and the iron-bound Fur represses the genes encoding for iron uptake systems and stimulates the genes encoding for iron storage proteins. However, the “iron-bound” Fur has never been isolated from any bacteria. Here we report that the Escherichia coli Fur has a bright red color when expressed in E. coli mutant cells containing an elevated intracellular free iron content because of deletion of the iron–sulfur cluster assembly proteins IscA and SufA. The acid-labile iron and sulfide content analyses in conjunction with the EPR and Mössbauer spectroscopy measurements and the site-directed mutagenesis studies show that the red Fur protein binds a [2Fe-2S] cluster via conserved cysteine residues. The occupancy of the [2Fe-2S] cluster in Fur protein is ∼31% in the E. coli iscA/sufA mutant cells and is decreased to ∼4% in WT E. coli cells. Depletion of the intracellular free iron content using the membrane-permeable iron chelator 2,2´-dipyridyl effectively removes the [2Fe-2S] cluster from Fur in E. coli cells, suggesting that Fur senses the intracellular free iron content via reversible binding of a [2Fe-2S] cluster. The binding of the [2Fe-2S] cluster in Fur appears to be highly conserved, because the Fur homolog from Hemophilus influenzae expressed in E. coli cells also reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis.


FEBS Journal ◽  
2020 ◽  
Vol 287 (21) ◽  
pp. 4767-4782
Author(s):  
Ashok Kumar Madikonda ◽  
Akbarpasha Shaikh ◽  
Sonali Khanra ◽  
Harshita Yakkala ◽  
Sailu Yellaboina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document