First report in Spain of a variant of Tomato mosaic virus (ToMV) overcoming the Tm-22 resistance gene in tomato (Lycopersicon esculentum)

2005 ◽  
Vol 54 (4) ◽  
pp. 566-566 ◽  
Author(s):  
J. Aramburu ◽  
L. Galipienso
2014 ◽  
Vol 111 (33) ◽  
pp. E3486-E3495 ◽  
Author(s):  
K. Ishibashi ◽  
Y. Kezuka ◽  
C. Kobayashi ◽  
M. Kato ◽  
T. Inoue ◽  
...  

Author(s):  
In-Sook Cho ◽  
Ju-Yeon Yoon ◽  
Eun-Young Yang ◽  
Soo-Young Chae ◽  
Bong Nam Chung ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Ahmed Sabra ◽  
Mohammed Ali Al Saleh ◽  
I. M. Alshahwan ◽  
Mahmoud A. Amer

Tomato (Solanum lycopersicum L.) is the most economically important member of family Solanaceae and cultivated worldwide and one of the most important crops in Saudi Arabia. The aim of this study is screening of the most common viruses in Riyadh region and identified the presence of tomato brown rugose fruit virus (ToBRFV) in Saudi Arabia. In January 2021, unusual fruit and leaf symptoms were observed in several greenhouses cultivating tomatoes commercially in Riyadh Region, Saudi Arabia. Fruit symptoms showed irregular brown spots, deformation, and yellowing spots which render the fruits non-marketable, while the leaf symptoms included mottling, mosaic with dark green wrinkled and narrowing. These plants presented the symptoms similar to those described in other studies (Salem et al., 2015, Luria et al., 2017). A total 45 Symptomatic leaf samples were collected and tested serologically against suspected important tomato viruses including: tomato chlorosis virus, tomato spotted wilt virus, tomato yellow leaf curl virus, tomato chlorotic spot virus, tomato aspermy virus, tomato bushy stunt virus, tomato black ring virus, tomato ringspot virus, tomato mosaic virus, pepino mosaic virus and ToBRFV using Enzyme linked immunosorbent assay (ELISA) test (LOEWE®, Biochemica, Germany), according to the manufacturers' instructions. The obtained results showed that 84.4% (38/45) of symptomatic tomato samples were infected with at least one of the detected viruses. The obtained results showed that 55.5% (25/45) of symptomatic tomato samples were found positive to ToBRFV, three out of 25 samples (12%) were singly infected, however 22 out of 45 (48.8%) had mixed infection between ToBRFV and with at least one of tested viruses. A sample with a single infection of ToBRFV was mechanically inoculated into different host range including: Chenopodium amaranticolor, C. quinoa, C. album, C. glaucum, Nicotiana glutinosa, N. benthamiana, N. tabacum, N. occidentalis, Gomphrena globosa, Datura stramonium, Solanum lycopersicum, S. nigrum, petunia hybrida and symptoms were observed weekly and the systemic presence of the ToBRFV was confirmed by RT-PCR and partial nucleotide sequence. A Total RNA was extracted from DAS-ELISA positive samples using Thermo Scientific GeneJET Plant RNA Purification Mini Kit. Reverse transcription-Polymerase chain reaction (RT-PCR) was carried out using specific primers F-3666 (5´-ATGGTACGAACGGCGGCAG-3´) and R-4718 (5´-CAATCCTTGATGTG TTTAGCAC-3´) which amplified a fragment of 1052 bp of Open Reading Frame (ORF) encoding the RNA-dependent RNA polymerase (RdRp). (Luria et al. 2017). RT-PCR products were analyzed using 1.5 % agarose gel electrophoresis. RT-PCR products were sequenced in both directions by Macrogen Inc. Seoul, South Korea. Partial nucleotide sequences obtained from selected samples were submitted to GenBank and assigned the following accession numbers: MZ130501, MZ130502, and MZ130503. BLAST analysis of Saudi isolates of ToBRFV showed that the sequence shared nucleotide identities ranged between 98.99 % to 99.50 % among them and 98.87-99.87 % identity with ToBRFV isolates from Palestine (MK881101 and MN013187), Turkey (MK888980, MT118666, MN065184, and MT107885), United Kingdom (MN182533), Egypt (MN882030 and MN882031), Jordan (KT383474), USA (MT002973), Mexico (MK273183 and MK273190), Canada (MN549395) and Netherlands (MN882017, MN882018, MN882042, MN882023, MN882024, and MN882045). To our knowledge, this is the first report of occurrence of ToBRFV infecting tomato in Saudi Arabia which suggests its likely introduction by commercial seeds from countries reported this virus and spread in greenhouses through mechanical means. The author(s) declare no conflict of interest. Keywords: Tomato brown rugose fruit virus, tomato, ELISA, RT-PCR, Saudi Arabia References: Luria N, et al., 2017. PLoS ONE 12(1): 1-19. Salem N, et al., 2015. Archives of Virology 161(2): 503-506. Fig. 1. Symptoms caused by ToBRFV showing irregular brown spots, deformation, yellowing spots on fruits (A, B, C) and bubbling and mottling, mosaic with dark green wrinkled and narrowing on leaf (D).


Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 458-458 ◽  
Author(s):  
O. Arogundade ◽  
O.-I. Aderonmu ◽  
J.-O. Matthew ◽  
E.-I. Ayo-John

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1108-1108 ◽  
Author(s):  
C. Córdoba ◽  
A. García-Rández ◽  
N. Montaño ◽  
C. Jordá

In July 2003, noticeable deformations of leaves were observed on a local variety of Capsicum chinense, also called ‘Aji dulce’, from a pepper plantation located in Venezuela, (Monagas State). ‘Aji dulce’ is a basic ingredient of the Venezuelan gastronomy with an estimated cultivated area of 2,000 ha. The seeds of this local pepper are obtained by the growers who reproduce and multiply their own seeds every year. Seeds of affected plants were sent to our laboratory, and a group of approximately 100 seeds was sown in a controlled greenhouse that belongs to the Polytechnic University of Valencia, Spain. Three months later, obvious curling and bubbling developed on the leaves of the plants. Extracts of symptomatic plants tested negative for Tomato mosaic virus (ToMV), Tobacco mosaic virus (TMV), Pepper mild mottle virus (PMMV), and Tobacco etch virus (TEV) by double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA) with policlonal antibodies specific to each virus (Loewe Biochemica GMBH, Sauerlach, Germany; Phyto-Diagnostics, INRA, France). Total RNA was isolated from 0.5 g of original seed sent from Venezuela and from 25 samples of leaves of plants grown in the greenhouse with an RNeasy Plant Mini Kit (Qiagen Sciences, Germantown, Maryland). The RNA isolated was used in reverse transcription-polymerase chain reaction (RT-PCR) with specific primers for Tobacco mild green mosaic virus (TMGMV) (1) predicted to amplify a 530 bp of the coat protein region. From all samples, a RT-PCR product of the expected size was obtained and then sequenced. BLAST analysis of one sequence (GenBank Accession No. DQ460731) showed high levels of identity with TMGMV isolates, with more than 99% nucleotide identity with the DSMZ PV-112 isolate (GenBank Accession No. AJ429096). The symptomatology observed on pepper plants, the TMGMV RT-PCR assay, and the consensus of sequenced regions with TMGMV lead us to conclude that TMGMV was the causal agent of the diseased C. chinense plants. Although TMGMV has a wide plant host range occurring worldwide (1), to our knowledge, this is not only the first time TMGMV has been detected in Venezuela, but also the first report of TMGMV in C. chinense in Venezuela and the first reliable probe of the TMGMV seed transmission. Reference: (1) J. Cohen et al. Ann. Appl. Biol. 138:153, 2001.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1164-1164 ◽  
Author(s):  
S. S. Hashemi ◽  
F. Rakhshandehroo ◽  
N. Shahraeen

The natural incidence of Tomato mosaic virus (ToMV) in common sow thistle (Sonchus oleraceus) from vegetable fields was assessed to determine the role of this weed species as a virus inoculum source. Twenty sow thistle plants with virus-like foliar symptoms including mosaic and malformations were collected from five vegetable fields in Tehran province, Iran, and analyzed by double antibody sandwich (DAS)-ELISA for the presence of ToMV, Tobacco mosaic virus (TMV), and Cucumber mosaic virus (CMV) using specific polyclonal antibodies (Agdia, Elkhart, IN). Six out of the 20 sow thistle plants tested by ELISA were infected with ToMV. This virus was detected in three of five vegetable fields surveyed, while CMV and TMV were not detected. Mosaic symptoms were associated with the ToMV infection, similar to those caused by TMV in common sow thistle in Iran (2). Viral infection was confirmed by RT-PCR using previously described specific primers to amplify a region in the coat protein gene of ToMV (3). The RT-PCR resulted in the amplification of an expected fragment of ~480 bp from ToMV-infected but not from healthy plants. The nucleotide sequence of the amplified DNA fragment was purified (GeneJET Gel Extraction Kit, Fermentas, Germany), directly sequenced, and deposited in GenBank as Accession No. KF527464. BLAST analysis showed 95 to 97% and 98 to 100% identity at the nucleotide and amino acid levels, respectively, with comparable sequences of other ToMV isolates (GenBank AF062519, FN985165, GQ280794, and JX857634). Mechanical inoculation of sow thistle plants with sap of symptomatic sow thistles reproduced symptoms of field-infected sow thistles. The presence of ToMV in the inoculated plants was confirmed by ELISA and RT-PCR. This suggested that ToMV could be the causal agent of the disease on sow thistle. In our earlier studies, the distribution and genetic diversity of ToMV isolates infecting vegetable crops and weed plants were studied (1); however, to our knowledge, this is the first report of ToMV infecting common sow thistle in Iran. References: (1) V. Aghamohammadi et al. J. Plant Pathol. 95:339, 2013. (2) A. Alishiri et al. Plant Pathol. J. 29:260, 2013. (3) B. Letschert et al. J. Virol. Methods 106:10, 2002.


Plant Disease ◽  
1999 ◽  
Vol 83 (3) ◽  
pp. 304-304 ◽  
Author(s):  
A. Dookun ◽  
S. Aljanabi ◽  
S. Saumtally ◽  
L. J. C. Autrey

In recent years, tomato plants (Lycopersicon esculentum Mill., cultivar MST 32/1) grown in Mauritius were observed with symptoms characteristic of a phytoplasmal infection. Young plants exhibited stunted growth, with a bunchy top symptom on one or more stems. The leaves were small with a curled margin, sometimes were purplish, and were clustered as a rosette. On older plants, other leaf symptoms, such as necrotic vein, mosaic, and vein clearing, that were typical of viral infection were observed. In March to June 1998, research was initiated to determine whether a phytoplasma or a virus was associated with the problem. Virus screening was carried out by double antibody sandwich enzyme-linked immuno-sorbent assay (DAS-ELISA) with the following antisera: tomato mosaic virus (TMV), tomato leaf curl virus (TLCV), tomato spotted wilt virus (TSWV), cucumber mosaic virus (CMV), potato virus X (PVX), potato virus Y (PVY), and potato leaf roll virus (PLRV). The presence of a phytoplasma was assayed by the polymerase chain reaction (PCR) with universal primers that amplify the 16S rDNA sequences. Oligonucleotide pairs RU3 and FU5 (1) and P1 and P6 (2) were evaluated separately. Template DNA was prepared from young leaves with the Nucleon Phyta-Pure Plant DNA extraction kit (catalog no. RPN 8511, Amersham Life Science, Buckinghamshire, U.K.). Amplification of a 880-bp or a 1,400-bp product with the two primer pairs confirmed the presence of a phyto-plasma in the tomato plants with the bunchy top symptoms. No amplification was obtained from plants that had both bunchy top and necrotic symptoms on the leaves and that were found to be infected with PVY by ELISA. To determine whether phenolics and other inhibitors from the virus-induced necrotic tissue interfered with the detection of phytoplasmas, plant DNA from these tissues was spiked with known phytoplasmal DNA. Amplification was not successful, confirming the presence of PCR inhibitors. Further purification of the DNA with phenol/chloroform before precipitation helped to obtain DNA of a purer quality from which a positive band representing the sequence of a phytoplasma was amplified. This is the first report of a phytoplasma in tomato in Mauritius. References: (1) U. Ahrens and E. Seemüller. Phytopathology 82:828, 1992. (2) S. Deng and D. Hiruku. J. Microbiol. Methods 14:53, 1991.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 974-974 ◽  
Author(s):  
S. L. Shih ◽  
S. K. Green ◽  
W. S. Tsai ◽  
L. M. Lee ◽  
J. T. Wang ◽  
...  

During December 2003, severe leaf yellowing, leaf curling, and stunting symptoms were observed in tomato (Lycopersicon esculentum) plantings in Melkassa (1,550 m above sea level), Ethiopia. Eleven symptomatic samples were collected and tested for the presence of a begomovirus using polymerase chain reaction (PCR) with the begomovirus-specific degenerate primer pair PAL1v1978/PAR1c715 (3). Samples were also tested for Cucumber mosaic virus (CMV), Potato virus Y (PVY), Tobacco etch virus (TEV), Pepper veinal mottle virus (PVMV), and Tomato mosaic virus (ToMV) using enzyme-linked immunosorbent assay (ELISA). All samples were negative for CMV, PVY, TEV, PVMV, and ToMV. However, the expected 1.4-kb PCR product for begomoviruses was obtained from all samples. DNA-B and DNA-beta were not detectable using PCR with the DNA-B specific primer pairs DNABLC1/DNABLV2 and DNABLC2/ DNABLV2 (2) and the DNA-beta primer pair Beta01/Beta02 (1), respectively. The 1.4-kb PCR product of one sample was cloned and sequenced. On the basis of the sequence of the 1.4-kb DNA product, specific primers were designed to complete the DNA-A sequence. The DNA-A consisted of 2,785 nucleotides (GenBank Accession No. DQ358913) and was found to contain the six predicted open reading frames (ORFs V1, V2, C1, C2, C3, and C4). A BLAST analysis was conducted with geminivirus sequences available in the GenBank database at the National Center for Biotechnology Information (Bethesda, MD), and DNAMAN software (Lynnon Corporation, Quebec, Canada) was used for further comparisons. The DNA-A sequence of the virus associated with yellow leaf curl disease of tomato from Ethiopia showed highest sequence identity (92%) with Tomato yellow leaf curl Mali virus (TYLCMLV; GenBank Accession No. AY502934). On the basis of the DNA-A sequence comparison and the ICTV demarcation of species at 89% sequence identity, the Ethiopian virus is a provisional strain of TYLCMLV described from Mali. To our knowledge, this is the first report of a begomovirus associated with tomato yellow leaf curl disease in Ethiopia. References: (1) R. W. Briddon et al. Mol. Biotechnol. 20:315, 2002. (2) S. K. Green et al. Plant Dis. 85:1286, 2001. (3) M. R. Rojas et al. Plant Dis. 77:340, 1993.


Plant Disease ◽  
2009 ◽  
Vol 93 (7) ◽  
pp. 761-761 ◽  
Author(s):  
M. I. Font ◽  
M. C. Córdoba-Sellés ◽  
M. C. Cebrián ◽  
J. A. Herrera-Vásquez ◽  
A. Alfaro-Fernández ◽  
...  

During the springs of 2007 and 2008, leaf deformations as well as symptoms of mild green and chlorotic mosaic were observed on pepper (Capsicum annuum) plants grown in Monastir (northwest Tunisia) and Kebili (southeast Tunisia). With the support of projects A/5269/06 and A/8584/07 from the Spanish Agency for International Cooperation (AECI), symptomatic leaf samples were analyzed by transmission electron microscopy (TEM) of leaf-dip preparations. Typical tobamovirus-like particles (rigid rods ≈300 nm long) were observed in crude plant extracts. According to literature, at least six tobamoviruses infect peppers: Paprika mild mottle virus (PaMMV); Pepper mild mottle virus (PMMoV); Ribgrass mosaic virus (RMV); Tobacco mild green mosaic virus (TMGMV); Tobacco mosaic virus (TMV); and Tomato mosaic virus (ToMV) (1). Extracts from six symptomatic plants from Monastir and four from Kebili fields tested negative for ToMV, TMV, and PMMoV and tested positive for TMGMV by double-antibody sandwich (DAS)-ELISA using polyclonal antibodies specific to each virus (Loewe Biochemica GMBH, Sauerlach, Germany). To confirm the positive TMGMV results, total RNAs from 10 symptomatic plants that tested positive by ELISA were extracted and analyzed by reverse transcription (RT)-PCR using primers designed to specifically amplify a region of the coat protein gene (CP) of TMGMV (2). The 524-bp TMGMV-CP specific DNA fragment was amplified from all samples, but was not amplified from healthy plants or the sterile water used with negative controls. RT-PCR products were purified and directly sequenced. BLAST analysis of the obtained sequence (GenBank No. EU770626) showed 99 to 98% nucleotide identity with TMGMV isolates PAN-1, DSMZ PV-0113, TMGMV-Pt, and VZ1 (GenBank Nos. EU934035, EF469769, AM262165, and DQ460731, respectively) and less than 69% with PaMMV and PMMoV isolates (GenBank Nos. X72586 and AF103777, respectively). Two TMGMV-positive, singly, infected symptomatic pepper plants collected from Monastir and Kebili were used in mechanical transmissions to new pepper and tomato plants. Inoculated pepper plants exhibited mild chlorosis symptoms and tested positive for TMGMV only; however, inoculated tomato plants cv. Marmande were asymptomatic and tested negative as expected for TMGMV infection (1). To our knowledge, although C. annuum has been shown as a natural host for TMGMV (2), this is the first report of TMGMV in Tunisia. Reference: (1) A. A. Brunt et al. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. Online publication, 1996. (2) J. Cohen et al. Ann. Appl. Biol. 138:153, 2001.


Sign in / Sign up

Export Citation Format

Share Document