scholarly journals Microparticles Shed from Different Antigen-Presenting Cells Display an Individual Pattern of Surface Molecules and a Distinct Potential of Allogeneic T-Cell Activation

2005 ◽  
Vol 61 (3) ◽  
pp. 226-233 ◽  
Author(s):  
W. Kolowos ◽  
U. S. Gaipl ◽  
A. Sheriff ◽  
R. E. Voll ◽  
P. Heyder ◽  
...  
1998 ◽  
Vol 187 (10) ◽  
pp. 1611-1621 ◽  
Author(s):  
Sarah E. Townsend ◽  
Christopher C. Goodnow

Antigen-specific B cells are implicated as antigen-presenting cells in memory and tolerance responses because they capture antigens efficiently and localize to T cell zones after antigen capture. It has not been possible, however, to visualize the effect of specific B cells on specific CD4+ helper T cells under physiological conditions. We demonstrate here that rare T cells are activated in vivo by minute quantities of antigen captured by antigen-specific B cells. Antigen-activated B cells are helped under these conditions, whereas antigen-tolerant B cells are killed. The T cells proliferate and then disappear regardless of whether the B cells are activated or tolerant. We show genetically that T cell activation, proliferation, and disappearance can be mediated either by transfer of antigen from antigen-specific B cells to endogenous antigen-presenting cells or by direct B–T cell interactions. These results identify a novel antigen presentation route, and demonstrate that B cell presentation of antigen has profound effects on T cell fate that could not be predicted from in vitro studies.


Nano Letters ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 6945-6954 ◽  
Author(s):  
Fatemeh S. Majedi ◽  
Mohammad Mahdi Hasani-Sadrabadi ◽  
Timothy J. Thauland ◽  
Song Li ◽  
Louis-S. Bouchard ◽  
...  

2021 ◽  
Author(s):  
Shreyas N. Dahotre ◽  
Anna M. Romanov ◽  
Fang-Yi Su ◽  
Gabriel A. Kwong

AbstractAdoptive T cell therapies are transforming the treatment of solid and liquid tumors, yet their widespread adoption is limited in part by the challenge of generating functional cells. T cell activation and expansion using conventional antigen-presenting cells (APCs) is unreliable due to the variable quality of donor-derived APCs. As a result, engineered approaches using nanomaterials presenting T cell activation signals are a promising alternative due to their ability to be robustly manufactured with precise control over stimulation cues. In this work, we design synthetic APCs that consist of liposomes surface-functionalized with peptide-major histocompatibility complexes (pMHC). Synthetic APCs selectively target and activate antigen-specific T cell populations to levels similar to conventional protocols using non-specific αCD3 and αCD28 antibodies without the need for costimulation signals. T cells treated with synthetic APCs produce effector cytokines and demonstrate cytotoxic activity when co-cultured with tumor cells presenting target antigen in vitro. Following adoptive transfer into tumor-bearing mice, activated cells control tumor growth and improve overall survival compared to untreated mice. Synthetic APCs could potentially be used in the future to improve the accessibility of adoptive T cell therapies by removing the need for conventional APCs during manufacturing.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 3772-3783
Author(s):  
Anna Desalvo ◽  
Faith Bateman ◽  
Edward James ◽  
Hywel Morgan ◽  
Tim Elliott

Time-controlled stimulation of lymphocytes arrayed in microwells upon contact with opposing surface covered by a monolayer of antigen presenting cells.


Sign in / Sign up

Export Citation Format

Share Document