scholarly journals CD4+T-cell activation by antigen-presenting cells infected with urease-deficient recombinantMycobacterium bovisbacillus Calmette-Guérin

2008 ◽  
Vol 53 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Tetsu Mukai ◽  
Yumi Maeda ◽  
Toshiki Tamura ◽  
Yuji Miyamoto ◽  
Masahiko Makino
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hongyu Yu ◽  
Shaoyuan Cui ◽  
Yan Mei ◽  
Qinggang Li ◽  
Lingling Wu ◽  
...  

Background. Mesangial cells play a prominent role in the development of inflammatory diseases and autoimmune disorders of the kidney. Mesangial cells perform the essential functions of helping to ensure that the glomerular structure is stable and regulating capillary flow, and activated mesangial cells acquire proinflammatory activities. We investigated whether activated mesangial cells display immune properties and control the development of T cell immunity. Methods. Flow cytometry analysis was used to study the expression of antigen-presenting cell surface markers and costimulatory molecules in mesangial cells. CD4+ T cell activation induced by mesangial cells was detected in terms of T cell proliferation and cytokine production. Results. IFN-γ-treated mesangial cells express membrane proteins involved in antigen presentation and T cell activation, including MHC-II, ICAM-1, CD40, and CD80. This finding suggests that activated mesangial cells can take up and present antigenic peptides to initiate CD4+ T cell responses and thus act as nonprofessional antigen-presenting cells. Polarization of naïve CD4+ T cells (Th0 cells) towards the Th1 phenotype was induced by coculture with activated mesangial cells, and the resulting Th1 cells showed increased mRNA and protein expression of inflammation-associated genes. Conclusion. Mesangial cells can present antigen and modulate CD4+ T lymphocyte proliferation and differentiation. Interactions between mesangial cells and T cells are essential for sustaining the inflammatory response in a variety of glomerulonephritides. Therefore, mesangial cells might participate in immune function in the kidney.


1998 ◽  
Vol 187 (10) ◽  
pp. 1611-1621 ◽  
Author(s):  
Sarah E. Townsend ◽  
Christopher C. Goodnow

Antigen-specific B cells are implicated as antigen-presenting cells in memory and tolerance responses because they capture antigens efficiently and localize to T cell zones after antigen capture. It has not been possible, however, to visualize the effect of specific B cells on specific CD4+ helper T cells under physiological conditions. We demonstrate here that rare T cells are activated in vivo by minute quantities of antigen captured by antigen-specific B cells. Antigen-activated B cells are helped under these conditions, whereas antigen-tolerant B cells are killed. The T cells proliferate and then disappear regardless of whether the B cells are activated or tolerant. We show genetically that T cell activation, proliferation, and disappearance can be mediated either by transfer of antigen from antigen-specific B cells to endogenous antigen-presenting cells or by direct B–T cell interactions. These results identify a novel antigen presentation route, and demonstrate that B cell presentation of antigen has profound effects on T cell fate that could not be predicted from in vitro studies.


Nano Letters ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 6945-6954 ◽  
Author(s):  
Fatemeh S. Majedi ◽  
Mohammad Mahdi Hasani-Sadrabadi ◽  
Timothy J. Thauland ◽  
Song Li ◽  
Louis-S. Bouchard ◽  
...  

2021 ◽  
Author(s):  
Shreyas N. Dahotre ◽  
Anna M. Romanov ◽  
Fang-Yi Su ◽  
Gabriel A. Kwong

AbstractAdoptive T cell therapies are transforming the treatment of solid and liquid tumors, yet their widespread adoption is limited in part by the challenge of generating functional cells. T cell activation and expansion using conventional antigen-presenting cells (APCs) is unreliable due to the variable quality of donor-derived APCs. As a result, engineered approaches using nanomaterials presenting T cell activation signals are a promising alternative due to their ability to be robustly manufactured with precise control over stimulation cues. In this work, we design synthetic APCs that consist of liposomes surface-functionalized with peptide-major histocompatibility complexes (pMHC). Synthetic APCs selectively target and activate antigen-specific T cell populations to levels similar to conventional protocols using non-specific αCD3 and αCD28 antibodies without the need for costimulation signals. T cells treated with synthetic APCs produce effector cytokines and demonstrate cytotoxic activity when co-cultured with tumor cells presenting target antigen in vitro. Following adoptive transfer into tumor-bearing mice, activated cells control tumor growth and improve overall survival compared to untreated mice. Synthetic APCs could potentially be used in the future to improve the accessibility of adoptive T cell therapies by removing the need for conventional APCs during manufacturing.


Sign in / Sign up

Export Citation Format

Share Document