scholarly journals Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis

2008 ◽  
Vol 55 (3) ◽  
pp. 514-525 ◽  
Author(s):  
Faye M. Rosin ◽  
Naohide Watanabe ◽  
Jean-Luc Cacas ◽  
Naohiro Kato ◽  
Juana M. Arroyo ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilona E. Grabowicz ◽  
Bartek Wilczyński ◽  
Bożena Kamińska ◽  
Adria-Jaume Roura ◽  
Bartosz Wojtaś ◽  
...  

AbstractGenome-wide studies have uncovered specific genetic alterations, transcriptomic patterns and epigenetic profiles associated with different glioma types. We have recently created a unique atlas encompassing genome-wide profiles of open chromatin, histone H3K27ac and H3Kme3 modifications, DNA methylation and transcriptomes of 33 glioma samples of different grades. Here, we intersected genome-wide atlas data with topologically associating domains (TADs) and demonstrated that the chromatin organization and epigenetic landscape of enhancers have a strong impact on genes differentially expressed in WHO low grade versus high grade gliomas. We identified TADs enriched in glioma grade-specific genes and/or epigenetic marks. We found the set of transcription factors, including REST, E2F1 and NFKB1, that are most likely to regulate gene expression in multiple TADs, containing specific glioma-related genes. Moreover, many genes associated with the cell–matrix adhesion Gene Ontology group, in particular 14 PROTOCADHERINs, were found to be regulated by long-range contacts with enhancers. Presented results demonstrate the existence of epigenetic differences associated with chromatin organization driving differential gene expression in gliomas of different malignancy.


2019 ◽  
Author(s):  
Marlee K. Ng ◽  
Ulrich Braunschweig ◽  
Benjamin J. Blencowe ◽  
Peter Cheung

SummaryH2A.Z mono-ubiquitylation has been linked to transcriptional repression, but the mechanisms involved are not well understood. To address this, we developed a biotinylation-based approach to purify ubiquitylated H2A.Z (H2A.Zub) mononucleosomes for biochemical and genome-wide analyses. We observe that H2A.Zub nucleosomes are enriched for the repressive histone post-translational modification H3K27me3, but depleted of H3K4 methylation and other modifications associated with active transcription. ChIP-Seq analyses reveal that H2A.Zub-nucleosomes are enriched over non-expressed genes, and suggest that it is the relative ratio of ubiquitylated to non-ubiquitylated H2A.Z, rather than absolute presence or absence of H2A.Z ubiquitylation, that correlates with gene silencing. Finally, we observe that H2A.Zub-eniched mononucleosomes preferentially co-purify with transcriptional silencing factors as well as proteins involved in higher order chromatin organization such as CTCF and cohesin. Collectively, these results suggest an important role for H2A.Z ubiquitylation in mediating global transcriptional repression through its recruitment of silencing factors and nuclear architectural proteins.


2021 ◽  
Author(s):  
Paula Beati ◽  
Milena Massimino Stepnicka ◽  
Salome Vilchez Larrea ◽  
Guillermo Daniel Alonso ◽  
Josefina Ocampo

In Trypanosoma cruzi, as in every eukaryotic cell, DNA is packaged into chromatin by octamers of histone proteins that constitute nucleosomes. Besides compacting DNA, nucleosomes control DNA dependent processes by modulating the access of DNA binding proteins to regulatory elements on the DNA; or by providing the platform for additional layers of regulation given by histone variants and histone post-translational modifications. In trypanosomes, protein coding genes are constitutively transcribed as polycistronic units. Therefore, gene expression is controlled mainly post transcriptionally. However, chromatin organization and the histone code influence transcription, cell cycle progression, replication and DNA repair. Hence, determining nucleosome position is of uppermost importance to understand the peculiarities of these processes in trypanosomes. Digestion of chromatin with micrococcal nuclease followed by deep sequencing has been widely applied for genome-wide mapping of nucleosomes in several organisms. Nonetheless, this parasite presents numerous singularities. On one hand, special growth conditions and cell manipulation are required. On the other hand, chromatin organization shows some uniqueness that demands a specially designed analytical approach. An additional entanglement is given by the nature of its genome harboring a large content of repetitive sequences and the poor quality of the genome assembly and annotation of many strains. Here, we adapted this broadly used method to the hybrid reference strain, CL Brener. Particularly, we developed an exhaustive and thorough computational workflow for data analysis, highlighting the relevance of using its whole genome as a reference instead of the commonly used Esmeraldo-like haplotype. Moreover, the performance of two aligners, Bowtie2 and HISAT2 was tested to find the most appropriate tool to map any genomic read to reference genomes bearing this complexity.


Cell Research ◽  
2012 ◽  
Vol 22 (3) ◽  
pp. 490-503 ◽  
Author(s):  
Iouri Chepelev ◽  
Gang Wei ◽  
Dara Wangsa ◽  
Qingsong Tang ◽  
Keji Zhao

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0247209
Author(s):  
Michelle R. Mousel ◽  
Stephen N. White ◽  
Maria K. Herndon ◽  
David R. Herndon ◽  
J. Bret Taylor ◽  
...  

Mycoplasma ovipneumoniae contributes to polymicrobial pneumonia in domestic sheep. Elucidation of host genetic influences of M. ovipneumoniae nasal detection has the potential to reduce the incidence of polymicrobial pneumonia in sheep through implementation of selective breeding strategies. Nasal mucosal secretions were collected from 647 sheep from a large US sheep flock. Ewes of three breeds (Polypay n = 222, Rambouillet n = 321, and Suffolk n = 104) ranging in age from one to seven years, were sampled at three different times in the production cycle (February, April, and September/October) over four years (2015 to 2018). The presence and DNA copy number of M. ovipneumoniae was determined using a newly developed species-specific qPCR. Breed (P<0.001), age (P<0.024), sampling time (P<0.001), and year (P<0.001) of collection affected log10 transformed M. ovipneumoniae DNA copy number, where Rambouillet had the lowest (P<0.0001) compared with both Polypay and Suffolk demonstrating a possible genetic component to detection. Samples from yearlings, April, and 2018 had the highest (P<0.046) detected DNA copy number mean. Sheep genomic DNA was genotyped with the Illumina OvineHD BeadChip. Principal component analysis identified most of the variation in the dataset was associated with breed. Therefore, genome wide association analysis was conducted with a mixed model (EMMAX), with principal components 1 to 6 as fixed and a kinship matrix as random effects. Genome-wide significant (P<9x10-8) SNPs were identified on chromosomes 6 and 7 in the all-breed analysis. Individual breed analysis had genome-wide significant (P<9x10-8) SNPs on chromosomes 3, 4, 7, 9, 10, 15, 17, and 22. Annotated genes near these SNPs are part of immune (ANAPC7, CUL5, TMEM229B, PTPN13), gene translation (PIWIL4), and chromatin organization (KDM2B) pathways. Immune genes are expected to have increased expression when leukocytes encounter M. ovipneumoniae which would lead to chromatin reorganization. Work is underway to narrow the range of these associated regions to identify the underlying causal mutations.


2017 ◽  
Author(s):  
Naoki Kubo ◽  
Haruhiko Ishii ◽  
David Gorkin ◽  
Franz Meitinger ◽  
Xiong Xiong ◽  
...  

SummaryThe CCCTC-binding factor (CTCF) is widely regarded as a key player in chromosome organization in mammalian cells, yet direct assessment of the impact of loss of CTCF on genome architecture has been difficult due to its essential role in cell proliferation and early embryogenesis. Here, using auxin-inducible degron techniques to acutely deplete CTCF in mouse embryonic stem cells, we show that cell growth is severely slowed yet chromatin organization remains largely intact after loss of CTCF. Depletion of CTCF reduces interactions between chromatin loop anchors, diminishes occupancy of cohesin complex genome-wide, and slightly weakens topologically associating domain (TAD) structure, but the active and inactive chromatin compartments are maintained and the vast majority of TAD boundaries persist. Furthermore, transcriptional regulation and histone marks associated with enhancers are broadly unchanged upon CTCF depletion. Our results suggest CTCF-independent mechanisms in maintenance of chromatin organization.


Sign in / Sign up

Export Citation Format

Share Document