The chloroplast nucleoids of the bundle sheath and mesophyll cells of Zea mays

1989 ◽  
Vol 75 (1) ◽  
pp. 7-12 ◽  
Author(s):  
A. G. C. Lindbeck ◽  
R. J. Rose ◽  
M. E. Lawrence ◽  
J. V. Possingham
1987 ◽  
Vol 65 (10) ◽  
pp. 2061-2066
Author(s):  
B. Gélie ◽  
M. Petitprez ◽  
A. Souvre ◽  
L. Albertini

Ultrastructural changes induced by Exserohilum turcicum (Pass.) Leonard et Suggs in maize leaf cells are observed 24 to 72 h after inoculation, in a comparative study between two isogenic lines with or without the Ht-1 gene. In the susceptible plants (without Ht-1), the plasmalemma and the tonoplast of the mesophyll cells are the first cellular components altered, followed by disorganisation and alteration of organelles, which become scattered throughout the cell. Chloroplasts in particular seem to be very sensitive to the toxic action of the pathogen, which causes disruption of their envelope and grana. Bundle sheath cells are altered later and to a lesser extent than the mesophyll cells. In Ht-1 monogenic resistant inbred lines, cytoplasmic residues of prematurely dead cells surround healthy mesophyll cells protecting them and stimulating their activity and resulting in stabilization of the pathotoxic process 36 to 48 h after inoculation.


Weed Science ◽  
1973 ◽  
Vol 21 (4) ◽  
pp. 299-303 ◽  
Author(s):  
T. C. Ellwanger ◽  
S. W. Bingham ◽  
W. E. Chappell ◽  
S. A. Tolin

Corn (Zea mays L. ‘Funk's G-83’) seedling leaves exposed to flame-generated ultra-high temperatures produced in flame cultivation were fixed in glutaraldehyde, post fixed in osmium tetroxide, and embedded in Araldite. In the light microscope, bundle sheath cells of flamed tissue were more heavily stained with Azure II and less vacuolated than were nonflamed cells. Heated mesophyll cells contained swollen, disrupted, and granular chloroplasts. Examination of flamed tissue by electron microscopy revealed granular, dispersed cytaplasm and altered membrane systems. Chloroplast lamellar systems and envelopes, tonoplasts, and plasmalemmas were disintegrated in both bundle sheath and mesophyll cells.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 787-797
Author(s):  
Lizzie Cribb ◽  
Lisa N Hall ◽  
Jane A Langdale

Abstract Maize leaf blades differentiate dimorphic photosynthetic cell types, the bundle sheath and mesophyll, between which the reactions of C4 photosynthesis are partitioned. Leaf-like organs of maize such as husk leaves, however, develop a C3 pattern of differentiation whereby ribulose bisphosphate carboxylase (RuBPCase) accumulates in all photosynthetic cell types. The Golden2 (G2) gene has previously been shown to play a role in bundle sheath cell differentiation in C4 leaf blades and to play a less well-defined role in C3 maize tissues. To further analyze G2 gene function in maize, four g2 mutations have been characterized. Three of these mutations were induced by the transposable element Spm. In g2-bsd1-m1 and g2-bsd1-s1, the element is inserted in the second intron and in g2-pg14 the element is inserted in the promoter. In the fourth case, g2-R, four amino acid changes and premature polyadenylation of the G2 transcript are observed. The phenotypes conditioned by these four mutations demonstrate that the primary role of G2 in C4 leaf blades is to promote bundle sheath cell chloroplast development. C4 photosynthetic enzymes can accumulate in both bundle sheath and mesophyll cells in the absence of G2. In C3 tissue, however, G2 influences both chloroplast differentiation and photosynthetic enzyme accumulation patterns. On the basis of the phenotypic data obtained, a model that postulates how G2 acts to facilitate C4 and C3 patterns of tissue development is proposed.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Ghulam Mustafa ◽  
Muhammad Sarwar Khan

We report here plastid transformation in sugarcane using biolistic transformation and embryogenesis-based regeneration approaches. Somatic embryos were developed from unfurled leaf sections, containing preprogrammed progenitor cells, to recover transformation events on antibiotic-containing regeneration medium. After developing a proficient regeneration system, the FLARE-S (fluorescent antibiotic resistance enzyme, spectinomycin and streptomycin) expression cassette that carries species-specific homologous sequence tails was used to transform plastids and track gene transmission and expression in sugarcane. Plants regenerated from streptomycin-resistant and genetically confirmed shoots were subjected to visual detection of the fluorescent enzyme using a fluorescent stereomicroscope, after genetic confirmation. The resultant heteroplasmic shoots remained to segregate on streptomycin-containing MS medium, referring to the unique pattern of division and sorting of cells in C4 monocotyledonous compared to C3 monocotyledonous and dicotyledonous plants since in sugarcane bundle sheath and mesophyll cells are distinct and sort independently after division. Hence, the transformation of either mesophyll or bundle sheath cells will develop heteroplasmic transgenic plants, suggesting the transformation of both types of cells. Whilst developed transgenic sugarcane plants are heteroplasmic, and selection-based regeneration protocol envisaging the role of division and sorting of cells in the purification of transplastomic demands further improvement, the study has established many parameters that may open up exciting possibilities to express genes of agricultural or pharmaceutical importance in sugarcane.


1974 ◽  
Vol 52 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
C. K. M. Rathnam ◽  
V. S. R. Das

The intercellular and intracellular distributions of nitrate assimilating enzymes were studied. Nitrate reductase was found to be localized on the chloroplast envelope membranes. The chloroplastic NADPH – glutamate dehydrogenase was concentrated in the mesophyll cells. The extrachloroplastic NADH – glutamate dehydrogenase was localized in the bundle sheath cells. Glutamate synthesized in the mesophyll chloroplasts was interpreted to be utilized exclusively in the synthesis of aspartate, while in the bundle sheath cells it was thought to be consumed in other cellular metabolic processes. Based on the results, a scheme is proposed to account for the nitrate metabolism in the leaves of Eleusine coracana Gaertn. in relation to its aspartate-type C-4 pathway of photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document