Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains

1987 ◽  
Vol 164 (3) ◽  
pp. 601-606 ◽  
Author(s):  
Jean-Claude JAUNIAUX ◽  
Micheline VANDENBOL ◽  
Stephan VISSERS ◽  
Kathleen BROMAN ◽  
Marcelle GRENSON
1981 ◽  
Vol 1 (7) ◽  
pp. 584-593 ◽  
Author(s):  
P Niederberger ◽  
G Miozzari ◽  
R Hütter

The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.


1987 ◽  
Vol 169 (4) ◽  
pp. 1684-1690 ◽  
Author(s):  
V T Chisholm ◽  
H Z Lea ◽  
R Rai ◽  
T G Cooper

Genetics ◽  
1977 ◽  
Vol 86 (4) ◽  
pp. 727-744
Author(s):  
Zita Lobo ◽  
P K Maitra

ABSTRACT Two independent isolates of Saccharomyces cerevisiae lacking hexokinase activity (EC 2.7.1.1) are described. Both mutant strains grow on glucose but are unable to grow on fructose, and contain two mutant genes h×k1 and h×k2 each. The mutations are recessive and noncomplementing. Genetic analysis suggests that these two unlinked genes h×k1 and h×k2 determine, independently of each other, the synthesis of hexokinase isozymes P1 and P2, respectively. h×k1 is located on chromosome VIR distal to met10, and h×k2 is on chromosome IIIR distal to MAL2. Of four hexokinase-positive spontaneous reversions, one is very tightly linked to h×k1 and the other three to the h×k2 locus. The reverted enzymes are considerably more thermolabile than the respective wild-type enzymes, and in one case show altered immunological properties. Data are presented which suggest that the h×k1 and h×k2 mutations are missense mutations in the structural genes of hexokinase P1 and hexokinase P2, respectively. These are presumably the only enzymes that allow S. cerevisiae to grow on fructose.


1981 ◽  
Vol 1 (7) ◽  
pp. 584-593
Author(s):  
P Niederberger ◽  
G Miozzari ◽  
R Hütter

The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1355-1362 ◽  
Author(s):  
Ardythe A McCracken ◽  
Igor V Karpichev ◽  
James E Ernaga ◽  
Eric D Werner ◽  
Andrew G Dillin ◽  
...  

Saccharomyces cerevisiae mutants deficient in degradation of alpha-1-proteinase inhibitor Z (A1PiZ) have been isolated and genetically characterized. Wild-type yeast expressing A1PiZ synthesize an ER form of this protein that is rapidly degraded by an intracellular proteolytic process known as ER-associated protein degradation (ERAD). The mutant strains were identified after treatment with EMS using a colony blot immunoassay to detect colonies that accumulated high levels of A1PiZ. A total of 120,000 colonies were screened and 30 putative mutants were identified. The level of A1PiZ accumulation in these mutants, measured by ELISA, ranged from two to 11 times that of A1PiZ in the parent strain. Further studies demonstrated that the increased levels of A1PiZ in most of the mutant strains was not the result of defective secretion or elevated A1PiZ mRNA. Pulse chase experiments indicated that A1PiZ was stabilized in several strains, evidence that these mutants are defective in ER-associated protein degradation. Genetic analyses revealed that most of the mutations were recessive, ∼30% of the mutants characterized conformed to simple Mendelian inheritance, and at least seven complementation groups were identified.


2000 ◽  
Vol 44 (1) ◽  
pp. 134-138 ◽  
Author(s):  
John Golin ◽  
Alisa Barkatt ◽  
Susan Cronin ◽  
George Eng ◽  
Leopold May

ABSTRACT To understand the chemical basis of action for thePDR5-encoded multidrug resistance transporter ofSaccharomyces cerevisiae, we compared the relative hypersensitivities of the wild-type (RW2802) and null mutant strains toward a series of tri-n-alkyltin compounds. These compounds differ from each other in a systematic fashion—either by hydrocarbon chain length or by anion composition. Using zone-of-inhibition and fixed-concentration assays, we found that the ethyl, propyl, and butyl compounds are strong PDR5substrates, whereas the methyl and pentyl compounds are weak. We conclude that hydrophobicity and anion makeup are relatively unimportant factors in determining whether a tri-n-alkyltin compound is a good PDR5 substrate but that the dissociation of the compound and the molecular size are significant.


1999 ◽  
Vol 10 (10) ◽  
pp. 3171-3186 ◽  
Author(s):  
Lisa L. Freeman-Cook ◽  
Joyce M. Sherman ◽  
Carrie B. Brachmann ◽  
Robin C. Allshire ◽  
Jef D. Boeke ◽  
...  

Although silencing is a significant form of transcriptional regulation, the functional and mechanistic limits of its conservation have not yet been established. We have identified theSchizosaccharomyces pombe hst4 + gene as a member of the SIR2/HST silencing gene family that is defined in organisms ranging from bacteria to humans.hst4Δ mutants grow more slowly than wild-type cells and have abnormal morphology and fragmented DNA. Mutant strains show decreased silencing of reporter genes at both telomeres and centromeres. hst4 + appears to be important for centromere function as well because mutants have elevated chromosome-loss rates and are sensitive to a microtubule-destabilizing drug. Consistent with a role in chromatin structure, Hst4p localizes to the nucleus and appears concentrated in the nucleolus.hst4Δ mutant phenotypes, including growth and silencing phenotypes, are similar to those of the Saccharomyces cerevisiae HSTs, and at a molecular level,hst4 + is most similar toHST4. Furthermore, hst4 + is a functional homologue of S. cerevisiae HST3 andHST4 in that overexpression ofhst4 + rescues the temperature-sensitivity and telomeric silencing defects of an hst3Δ hst4Δdouble mutant. These results together demonstrate that aSIR-like silencing mechanism is conserved in the distantly related yeasts and is likely to be found in other organisms from prokaryotes to mammals.


Sign in / Sign up

Export Citation Format

Share Document