Guava leaf volatiles and dimethyl disulphide inhibit response of Diaphorina citri Kuwayama to host plant volatiles

2010 ◽  
Vol 135 (6) ◽  
pp. 404-414 ◽  
Author(s):  
E. O. Onagbola ◽  
R. L. Rouseff ◽  
J. M. Smoot ◽  
L. L. Stelinski
PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0235630
Author(s):  
Haroldo Xavier Linhares Volpe ◽  
Odimar Zanuzo Zanardi ◽  
Rodrigo Facchini Magnani ◽  
Rejane Angélica Grigio Luvizotto ◽  
Victoria Esperança ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2861
Author(s):  
José Manuel Pineda-Ríos ◽  
Juan Cibrián-Tovar ◽  
Luis Martín Hernández-Fuentes ◽  
Rosa María López-Romero ◽  
Lauro Soto-Rojas ◽  
...  

The Annonaceae fruits weevil (Optatus palmaris) causes high losses to the soursop production in Mexico. Damage occurs when larvae and adults feed on the fruits; however, there is limited research about control strategies against this pest. However, pheromones provide a high potential management scheme for this curculio. Thus, this research characterized the behavior and volatile production of O. palmaris in response to their feeding habits. Olfactometry assays established preference by weevils to volatiles produced by feeding males and soursop. The behavior observed suggests the presence of an aggregation pheromone and a kairomone. Subsequently, insect volatiles sampled by solid-phase microextraction and dynamic headspace detected a unique compound on feeding males increased especially when feeding. Feeding-starvation experiments showed an averaged fifteen-fold increase in the concentration of a monoterpenoid on males feeding on soursop, and a decrease of the release of this compound males stop feeding. GC-MS analysis of volatiles identified this compound as α-terpineol. Further olfactometry assays using α-terpineol and soursop, demonstrated that this combination is double attractive to Annonaceae weevils than only soursop volatiles. The results showed a complementation effect between α-terpineol and soursop volatiles. Thus, α-terpineol is the aggregation pheromone of O. palmaris, and its concentration is enhanced by host-plant volatiles.


2012 ◽  
Vol 5 (1) ◽  
pp. 234 ◽  
Author(s):  
Vincent O Nyasembe ◽  
Peter E A Teal ◽  
Wolfgang R Mukabana ◽  
James H Tumlinson ◽  
Baldwyn Torto

2010 ◽  
Vol 101 (1) ◽  
pp. 89-97 ◽  
Author(s):  
R.S. Mann ◽  
R.L. Rouseff ◽  
J.M. Smoot ◽  
W.S. Castle ◽  
L.L. Stelinski

AbstractThe Asian citrus psyllid, Diaphorina citri Kuwayama, vectors Candidatus Liberibacter asiaticus (Las) and Candidatus Liberibacter americanus (Lam), the presumed causal agents of huanglongbing. D. citri generally rely on olfaction and vision for detection of host cues. Plant volatiles from Allium spp. (Alliaceae) are known to repel several arthropod species. We examined the effect of garlic chive (A. tuberosum Rottl.) and wild onion (A. canadense L.) volatiles on D. citri behaviour in a two-port divided T-olfactometer. Citrus leaf volatiles attracted significantly more D. citri adults than clean air. Volatiles from crushed garlic chive leaves, garlic chive essential oil, garlic chive plants, wild onion plants and crushed wild onion leaves all repelled D. citri adults when compared with clean air, with the first two being significantly more repellent than the others. However, when tested with citrus volatiles, only crushed garlic chive leaves and garlic chive essential oil were repellent, and crushed wild onions leaves were not.Analysis of the headspace components of crushed garlic chive leaves and garlic chive essential oil by gas chromatography-mass spectrometry revealed that monosulfides, disulfides and trisulfides were the primary sulfur volatiles present. In general, trisulfides (dimethyl trisulfide) inhibited the response of D. citri to citrus volatiles more than disulfides (dimethyl disulfide, allyl methyl disulfide, allyl disulfide). Monosulfides did not affect the behaviour of D. citri adults. A blend of dimethyl trisulfide and dimethyl disulfide in 1:1 ratio showed an additive effect on inhibition of D. citri response to citrus volatiles. The plant volatiles from Allium spp. did not affect the behaviour of the D. citri ecto-parasitoid Tamarixia radiata (Waterston). Thus, Allium spp. or the tri- and di-sulphides could be integrated into management programmes for D. citri without affecting natural enemies.


2012 ◽  
Vol 42 (6) ◽  
pp. 1050-1059 ◽  
Author(s):  
Lawrence M. Hanks ◽  
Jocelyn G. Millar ◽  
Judith A. Mongold-Diers ◽  
Joseph C.H. Wong ◽  
Linnea R. Meier ◽  
...  

We evaluated the attraction of native species of cerambycid beetles to blends of cerambycid pheromones and the host plant volatiles ethanol and α-pinene to determine whether such blends could be effective lures for detecting and monitoring multiple species. The complete six-component blend of pheromones included racemic 3-hydroxy-2-hexanone, 2,3-hexanediol isomers, (E)-6,10-dimethyl-5,9-undecadien-2-ol and the corresponding acetate, 2-(undecyloxy)-ethanol, and racemic 2-methyl-1-butanol. Bioassays in east-central Illinois captured 3070 cerambycid beetles of 10 species, including four species in the subfamily Cerambycinae ( Neoclytus acuminatus (Fabricius, 1775), Neoclytus mucronatus (Fabricius, 1775), Phymatodes lengi Joutel, 1911, and Xylotrechus colonus (Fabricius, 1775)) and six species in the subfamily Laminiae ( Aegomorphus modestus (Gyllenhal in Schoenherr, 1817), Astyleiopus variegatus (Haldeman, 1847), Astylidius parvus (LeConte, 1873), Graphisurus fasciatus (DeGeer, 1775), Lepturges angulatus (LeConte, 1852), and Monochamus carolinensis (Olivier, 1792)). Beetles were attracted to their pheromone components within the blend, with inhibition only evident in one species. Host plant volatiles synergized attraction for some species, and synergism usually was attributed to ethanol, with α-pinene enhancing attraction only for the pine specialist M. carolinensis. The optimal strategy for targeting a broad range of cerambycid species would be to bait traps with a blend of several pheromones plus ethanol and α-pinene because synergism by these plant volatiles is critical for some species, whereas strong inhibition is uncommon.


2018 ◽  
Vol 166 (8) ◽  
pp. 673-682
Author(s):  
Ayaovi Agbessenou ◽  
Agbéko Kodjo Tounou ◽  
Elie Ayitondji Dannon ◽  
Benjamin Datinon ◽  
Cyriaque Agboton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document