The role of respiratory syncytial virus in acute bronchiolitis in small children in northern Japan

1994 ◽  
Vol 36 (4) ◽  
pp. 371-374 ◽  
Author(s):  
MASAYUKI SAIJO ◽  
SATORU TAKAHASHI ◽  
MASAYO KOKUBO ◽  
TOMOYUKI SAINO ◽  
TAKUMA ISHII ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liwen Zhang ◽  
Yu Wan ◽  
Liang Ma ◽  
Kaihong Xu ◽  
Baojin Cheng

Background/Aim. Bronchiolitis is a common acute lower respiratory tract infectious disease in infants. Respiratory syncytial virus (RSV) infection is one of the main causes. Bronchiolitis can lead to a significant increase in the incidence of asthma in young children, but the mechanism of bronchiolitis transforming into asthma is still unclear. The study was aimed at investigating the role of NF-κB/IL-33/ST2 axis on RSV-induced acute bronchiolitis. Methods. A total of 40 infants diagnosed with acute bronchiolitis infected by RSV, and 20 normal infants were included in this study. BALB/c mice (6-8 weeks old, 20 ± 1.1  g) were used as study models. Enzyme-linked immunosorbent assay (ELISA), quantitative real time PCR, western blot analysis, immunohistochemical staining, and flow cytometry analysis were performed to examine relevant indicators. Results. IL-33 level was significantly elevated, and Th1/Th2 ratio is imbalance after in infants with acute bronchiolitis. In vivo study, we found that NF-κB/IL-33/ST2 axis is mediated the Th2 cytokine levels and BAL cell number induced by RSV. Acute bronchiolitis induced by RSV in a mouse model is attenuated after inhibition of NF-κB/IL-33/ST2 pathway. Moreover, we also confirmed that macrophages are important sources of IL-33 and are regulated by NF-κB pathway in RSV-induced mice. Conclusion. We confirmed that inhibition of NF-κB/IL-33/ST2 axis could attenuate acute bronchiolitis by RSV infected. Our findings not only demonstrate the potential role of IL-33 antibody in attenuating RSV-induced lung damage but also provide a new insight into better prevention of RSV-induced asthma by mediating NF-κB/IL-33/ST2 axis.


2009 ◽  
Vol 16 (6) ◽  
pp. 816-823 ◽  
Author(s):  
Carolina Scagnolari ◽  
Fabio Midulla ◽  
Alessandra Pierangeli ◽  
Corrado Moretti ◽  
Enea Bonci ◽  
...  

ABSTRACT Given the critical role of pattern recognition receptors (PRRs) in acid nucleic recognition in the initiation of innate immunity and the orchestration of adaptive immunity, the aim of this study was to determine whether any heterogeneity of PRR expression in the airway tracts of infants with respiratory syncytial virus (RSV) infection might explain the broad clinical spectrum of RSV-associated bronchiolitis in infants. For this purpose, the levels of melanoma differentiation-associated protein-5 (MDA-5), retinoic acid inducible gene-1 (RIG-1), and Toll-like receptor 3 (TLR-3), TLR-7, TLR-8, and TLR-9 mRNAs were evaluated, using TaqMan quantitative reverse transcription-PCR, in cells from nasopharyngeal washes collected from 157 infants suffering from acute bronchiolitis whether or not they were associated with respiratory viruses. High interindividual variability was observed in both virus-positive and -negative infants; however, the relative gene expression levels of MDA-5, RIG-1, TLR-7, and TLR-8 were significantly higher in the virus-infected group, whereas the expression levels of TLR-3 and TLR-9 were not significantly different. The differences in the gene expression of MDA-5, RIG-1, TLR-7, and TLR-8 were more evident in infants with RSV infection than in those with bocavirus or rhinovirus infection. In RSV-infected infants, PRR-mRNA levels also were analyzed in relation to interferon protein levels, viral load, clinical severity, days of hospitalization, age, and body weight. A significant positive correlation was observed only between RSV viral load and RIG-1 mRNA levels. These findings provide the first direct evidence that, in infants with respiratory virus-associated bronchiolitis, especially RSV, there are substantial changes in PRR gene expression; this likely is an important determinant of the clinical outcome of bronchiolitis.


PEDIATRICS ◽  
1995 ◽  
Vol 96 (2) ◽  
pp. 391-391
Author(s):  
Leon S. Greos

Alveolar macrophages are infected by RSV in vivo and coexpress potent immunomodulatory molecules that potentially regulate local immune response or lung injury caused by RSV infection.


2005 ◽  
Vol 86 (4) ◽  
pp. 1103-1107 ◽  
Author(s):  
Blanca García-Barreno ◽  
John Steel ◽  
Monica Payá ◽  
Luis Martínez-Sobrido ◽  
Teresa Delgado ◽  
...  

The reactivity of a panel of 12 monoclonal antibodies raised against the human respiratory syncytial virus 22 kDa (22K) protein was tested by Western blotting with a set of 22K deletion mutants. The results obtained identified sequences in the C-terminal half of the 22K polypeptide required for integrity of most antibody epitopes, except for epitope 112, which was lost in mutants with short N-terminal deletions. This antibody, in contrast to the others, failed to immunoprecipitate the native 22K protein, indicating that the N terminus of this protein is buried in the native molecule and exposed only under the denaturing conditions of Western blotting. In addition, N-terminal deletions that abolished reactivity with monoclonal antibody 112 also inhibited phosphorylation of the 22K protein previously identified at Ser-58 and Ser-61, suggesting that the N terminus is important in regulating the 22K protein phosphorylation status, most likely as a result of its requirement for protein folding.


2004 ◽  
Vol 98 (9) ◽  
pp. 879-882 ◽  
Author(s):  
Nikolaos G Papadopoulos ◽  
Dimitrios Gourgiotis ◽  
Artem Javadyan ◽  
Apostolos Bossios ◽  
Konstantina Kallergi ◽  
...  

2018 ◽  
Vol 99 (4) ◽  
pp. 489-500 ◽  
Author(s):  
Daniela Machado ◽  
Andrés Pizzorno ◽  
Jonathan Hoffmann ◽  
Aurélien Traversier ◽  
Hubert Endtz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document