scholarly journals Gene Expression of Nucleic Acid-Sensing Pattern Recognition Receptors in Children Hospitalized for Respiratory Syncytial Virus-Associated Acute Bronchiolitis

2009 ◽  
Vol 16 (6) ◽  
pp. 816-823 ◽  
Author(s):  
Carolina Scagnolari ◽  
Fabio Midulla ◽  
Alessandra Pierangeli ◽  
Corrado Moretti ◽  
Enea Bonci ◽  
...  

ABSTRACT Given the critical role of pattern recognition receptors (PRRs) in acid nucleic recognition in the initiation of innate immunity and the orchestration of adaptive immunity, the aim of this study was to determine whether any heterogeneity of PRR expression in the airway tracts of infants with respiratory syncytial virus (RSV) infection might explain the broad clinical spectrum of RSV-associated bronchiolitis in infants. For this purpose, the levels of melanoma differentiation-associated protein-5 (MDA-5), retinoic acid inducible gene-1 (RIG-1), and Toll-like receptor 3 (TLR-3), TLR-7, TLR-8, and TLR-9 mRNAs were evaluated, using TaqMan quantitative reverse transcription-PCR, in cells from nasopharyngeal washes collected from 157 infants suffering from acute bronchiolitis whether or not they were associated with respiratory viruses. High interindividual variability was observed in both virus-positive and -negative infants; however, the relative gene expression levels of MDA-5, RIG-1, TLR-7, and TLR-8 were significantly higher in the virus-infected group, whereas the expression levels of TLR-3 and TLR-9 were not significantly different. The differences in the gene expression of MDA-5, RIG-1, TLR-7, and TLR-8 were more evident in infants with RSV infection than in those with bocavirus or rhinovirus infection. In RSV-infected infants, PRR-mRNA levels also were analyzed in relation to interferon protein levels, viral load, clinical severity, days of hospitalization, age, and body weight. A significant positive correlation was observed only between RSV viral load and RIG-1 mRNA levels. These findings provide the first direct evidence that, in infants with respiratory virus-associated bronchiolitis, especially RSV, there are substantial changes in PRR gene expression; this likely is an important determinant of the clinical outcome of bronchiolitis.

2002 ◽  
Vol 76 (13) ◽  
pp. 6800-6814 ◽  
Author(s):  
Bing Tian ◽  
Yuhong Zhang ◽  
Bruce A. Luxon ◽  
Roberto P. Garofalo ◽  
Antonella Casola ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is a mucosa-restricted virus that is a leading cause of epidemic respiratory tract infections in children. In epithelial cells, RSV replication activates nuclear translocation of the inducible transcription factor nuclear factor κB (NF-κB) through proteolysis of its cytoplasmic inhibitor, IκB. In spite of a putative role in mediating virus-inducible gene expression, the spectrum of NF-κB-dependent genes induced by RSV infection has not yet been determined. To address this, we developed a tightly regulated cell system expressing a nondegradable, epitope-tagged IκBα isoform (Flag-IκBα Mut) whose expression could be controlled by exogenous addition of nontoxic concentrations of doxycycline. Flag-IκBα Mut expression potently inhibited IκBα proteolysis, NF-κB binding, and NF-κB-dependent gene transcription in cells stimulated with the prototypical NF-κB-activating cytokine tumor necrosis factor alpha (TNF-α) and in response to RSV infection. High-density oligonucleotide microarrays were then used to profile constitutive and RSV-induced gene expression in the absence or presence of Flag-IκBα Mut. Comparison of these profiles revealed 380 genes whose expression was significantly changed by the dominant-negative NF-κB. Of these, 236 genes were constitutive (not RSV regulated), and surprisingly, only 144 genes were RSV regulated, representing numerically ∼10% of the total population of RSV-inducible genes at this time point. Hierarchical clustering of the 144 RSV- and Flag-IκBα Mut-regulated genes identified two discrete gene clusters. The first group had high constitutive expression, and its expression levels fell in response to RSV infection. In this group, constitutive mRNA expression was increased by Flag-IκBα Mut expression, and the RSV-induced decrease in expression was partly inhibited. In the second group, constitutive expression was very low (or undetectable) and, after RSV infection, expression levels strongly increased. In this group, NF-κB was required for RSV-inducible expression because Flag-IκBα Mut expression blocked their induction by RSV. This latter cluster includes chemokines, transcriptional regulators, intracellular proteins regulating translation and proteolysis, and secreted proteins (complement components and growth factor regulators). These data suggest that NF-κB action induces global cellular responses after viral infection.


2001 ◽  
Vol 75 (24) ◽  
pp. 12421-12430 ◽  
Author(s):  
Ultan F. Power ◽  
Thierry Huss ◽  
Vincent Michaud ◽  
Hélène Plotnicky-Gilquin ◽  
Jean-Yves Bonnefoy ◽  
...  

ABSTRACT A BALB/c mouse model of enhanced pulmonary pathology following vaccination with formalin-inactivated alum-adsorbed respiratory syncytial virus (FI-RSV) and live RSV challenge was used to determine the type and kinetics of histopathologic lesions induced and chemokine gene expression profiles in lung tissues. These data were compared and contrasted with data generated following primary and/or secondary RSV infection or RSV challenge following vaccination with a promising subunit vaccine, BBG2Na. Severe peribronchiolitis and perivascularitis coupled with alveolitis and interstitial inflammation were the hallmarks of lesions in the lungs of FI-RSV-primed mice, with peak histopathology evident on days 5 and 9. In contrast, primary RSV infection resulted in no discernible lesions, while challenge of RSV-primed mice resulted in rare but mild peribronchiolitis and perivascularitis, with no evidence of alveolitis or interstitial inflammation. Importantly, mice vaccinated with a broad dose range (20 to 0.02 μg) of a clinical formulation of BBG2Na in aluminium phosphate demonstrated histopathology similar to that observed in secondary RSV infection. At the molecular level, FI-RSV priming was characterized by a rapid and strong up-regulation of eotaxin and monocyte chemotactic protein 3 (MCP-3) relative gene expression (potent lymphocyte and eosinophil chemoattractants) that was sustained through late time points, early but intermittent up-regulation of GRO/melanoma growth stimulatory activity gene and inducible protein 10 gene expression, while macrophage inflammatory protein 2 (MIP-2) and especially MCP-1 were up-regulated only at late time points. By comparison, primary RSV infection or BBG2Na priming resulted in considerably lower eotaxin and MCP-3 gene expression increases postchallenge, while expression of lymphocyte or monocyte chemoattractant chemokine genes (MIP-1β, MCP-1, and MIP-2) were of higher magnitude and kinetics at early, but not late, time points. Our combined histopathologic and chemokine gene expression data provide a basis for differentiating between aberrant FI-RSV-induced immune responses and normal responses associated with RSV infection in the mouse model. Consequently, our data suggest that BBG2Na may constitute a safe RSV subunit vaccine for use in seronegative infants.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S305-S306
Author(s):  
Li-Juan Jiang ◽  
Lisha Xu ◽  
Meng Huang ◽  
Shucha Zhang ◽  
Yang Li ◽  
...  

Abstract Background Respiratory syncytial virus (RSV) infection presents a significant health challenge in young children, elderly and immunocompromised patients. To date, there are no effective treatments available. EDP-938 was designed to meet this unmet medical need and is currently in Phase 2 clinical trials. Herein we report its preclinical pharmacokinetic (PK) and pharmacodynamic (PD) properties. Methods The pharmacokinetics of EDP-938 following single intravenous and oral doses were determined in mice, rats, dogs, and monkeys. In vitro cellular permeability and metabolic stability were assayed using Caco-2 cells and human liver microsomes, respectively. In vivo pharmacodynamic efficacy of EDP-938 was conducted in the African green monkey model, in which animals experimentally challenged with RSV were orally dosed twice daily with 100 mg/kg EDP-938 for 6 days starting 24 hours prior to infection. Results EDP-938 was well absorbed in the preclinical species with oral bioavailability values ranging from 27.1% in dogs, 35.4% in mice, 35.7% in rats, and 39.5% in monkeys, after a single oral dose when formulated in 0.5% methylcellulose. EDP-938 showed a moderate in vitro permeability of 3.6 x 10–6 cm/sec in Caco-2 cells. Based on the outcome of these absorption studies, EDP-938 was projected to have good oral absorption in humans. EDP-938 had low intrinsic clearance of 5 mL/minute/mg in human liver microsomes. Moreover, EDP-938 demonstrated potent antiviral efficacy in an African green monkey model of RSV infection. In untreated monkeys the RSV RNA viral load in the bronchoalveolar lavage fluid peaked at 106 copies/mL on day 5 post-infection, by comparison in animals treated with EDP-938 the viral load was below the limit of detection by day 3 post-infection. The PK/PD modeling suggested that plasma trough concentrations ≥10 × EC90 led to >4-log viral load reduction in EDP-938 treated monkeys. Conclusion The favorable preclinical PK and PD properties of EDP-938 support its further clinical development as a novel treatment for RSV infection. Disclosures All authors: No reported disclosures.


2015 ◽  
Vol 59 (8) ◽  
pp. 4889-4900 ◽  
Author(s):  
Robert Jordan ◽  
Matt Shao ◽  
Richard L. Mackman ◽  
Michel Perron ◽  
Tomas Cihlar ◽  
...  

ABSTRACTRespiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants. Effective treatment for RSV infection is a significant unmet medical need. While new RSV therapeutics are now in development, there are very few animal models that mimic the pathogenesis of human RSV, making it difficult to evaluate new disease interventions. Experimental infection of Holstein calves with bovine RSV (bRSV) causes a severe respiratory infection that is similar to human RSV infection, providing a relevant model for testing novel therapeutic agents. In this model, viral load is readily detected in nasal secretions by quantitative real-time PCR (qRT-PCR), and cumulative symptom scoring together with histopathology evaluations of infected tissue allow for the assessment of disease severity. The bovine RSV model was used to evaluate the antiviral activity of an RSV fusion inhibitor, GS1, which blocks virus entry by inhibiting the fusion of the viral envelope with the host cell membrane. The efficacy of GS1, a close structural analog of GS-5806 that is being developed to treat RSV infection in humans was evaluated in two randomized, blind, placebo-controlled studies in bRSV-infected calves. Intravenous administration of GS1 at 4 mg/kg of body weight/day for 7 days starting 24 h or 72 h postinoculation provided clear therapeutic benefit by reducing the viral load, disease symptom score, respiration rate, and lung pathology associated with bRSV infection. These data support the use of the bovine RSV model for evaluation of experimental therapeutics for treatment of RSV.


2014 ◽  
Vol 45 (3) ◽  
pp. 718-725 ◽  
Author(s):  
Corné H. van den Kieboom ◽  
Inge M.L. Ahout ◽  
Aldert Zomer ◽  
Kim H. Brand ◽  
Ronald de Groot ◽  
...  

Respiratory syncytial virus (RSV) causes mild infections in the vast majority of children. However, in some cases, it causes severe disease, such as bronchiolitis and pneumonia. Development of severe RSV infection is determined by the host response. Therefore, the main aim of this study was to identify biomarkers associated with severe RSV infection.To identify biomarkers, nasopharyngeal gene expression was profiled by microarray studies, resulting in the selection of five genes: ubiquitin D, tetraspanin 8, mucin 13, β-microseminoprotein and chemokine ligand 7.These genes were validated by real-time quantitative PCR in an independent validation cohort, which confirmed significant differences in gene expression between mildly and severely infected and between recovery and acute patients.Nasopharyngeal aspirate samples are regularly taken when a viral respiratory tract infection is suspected. In this article, we describe a method to discriminate between mild and severe RSV infection based on differential host gene expression. The combination of pathogen detection and host gene expression analysis in nasopharyngeal aspirates will significantly improve the diagnosis and prognosis of respiratory tract infections.


10.1038/80833 ◽  
2000 ◽  
Vol 1 (5) ◽  
pp. 398-401 ◽  
Author(s):  
Evelyn A. Kurt-Jones ◽  
Lana Popova ◽  
Laura Kwinn ◽  
Lia M. Haynes ◽  
Les P. Jones ◽  
...  

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S590-S590
Author(s):  
Brian M Maas ◽  
Jos Lommerse ◽  
Nele Plock ◽  
Radha Railkar ◽  
S Y Amy Cheung ◽  
...  

Abstract Background MK-1654 is a respiratory syncytial virus (RSV) F glycoprotein neutralizing monoclonal antibody (mAb) with an extended half-life in late development to prevent RSV infection in infants. Neutralizing mAbs, like MK-1654, have great potential for prophylaxis against viral infection. However, well-validated approaches for clinical dose and efficacy predictions are lacking. Methods Summary-level literature data from RSV prevention studies were used in a model-based meta-analysis (MBMA) to describe the relationship between RSV incidence rates and serum neutralizing antibody (SNA) titer. The model was validated using viral challenge experiments in cotton rats and phase 3 RSV-A efficacy results in infants for an anti-RSV F mAb, REGN-2222. A phase 2b human RSV challenge study (HCS) in adults was also conducted with MK-1654. Participants (N=70) received 100, 200, 300, or 900 mg of MK-1564 or placebo and were challenged intranasally with RSV 29 days later. RSV viral load and symptomatic infection were monitored. Data from the HCS were compared to model predictions. The MBMA was used to predict efficacy of MK-1654 in a virtual population of pre- and full- term infants. Results The relationship between SNA titer and RSV incidence rate defined using the viral load data from the cotton rat approximated the relationship identified for infants from the clinical MBMA. The MBMA was quantitatively consistent with the phase 3 efficacy results against RSV A for REGN-2222. In the HCS, RSV nasal viral load measured by RT-qPCR and quantitative culture as well as symptomatic infections were decreased in MK-1654 recipients compared to placebo. Incidence rates of RSV infection in the HCS were also consistent with MBMA predictions. The model-based clinical trial simulations for MK-1654 indicated a high probability of substantial efficacy against RSV-associated medically attended lower respiratory tract infection ( >75% for 5 months) for doses ≥75 mg. Conclusion Our MBMA successfully quantified the relationship between RSV SNA and clinically relevant endpoints, including lower respiratory tract infection in infants. MBMA-based efficacy predictions support continued development of the MK-1654 antibody for the prevention of RSV in infants. Disclosures Brian M. Maas, PharmD, Merck & Co., Inc. (Employee, Shareholder) Jos Lommerse, PhD, Certara (Employee, Shareholder)Merck & Co., Inc. (Independent Contractor) Nele Plock, PhD, Certara (Employee, Shareholder)Merck & Co., Inc. (Independent Contractor) Radha Railkar, PhD, Merck & Co., Inc. (Employee, Shareholder) S. Y. Amy Cheung, PhD, Certara (Employee, Shareholder) Luzelena Caro, PhD, Merck & Co., Inc. (Employee, Shareholder) Jingxian Chen, PhD, Merck & Co., Inc. (Employee, Shareholder) Wen Liu, MPH, Merck & Co., Inc. (Employee, Shareholder) Ying Zhang, PhD, Merck & Co., Inc. (Employee, Shareholder) Qinlei Huang, MS, Merck & Co., Inc. (Employee, Shareholder) Wei Gao, PhD, Merck & Co., Inc. (Employee, Shareholder) Li Qin, PhD, Certara (Employee, Shareholder)Merck & Co., Inc. (Independent Contractor) Jie Meng, MSc, Certara (Employee, Shareholder)Merck & Co., Inc. (Independent Contractor) Han Witjes, PhD, Certara (Employee, Shareholder)Merck & Co., Inc. (Independent Contractor) Emilie Schindler, PhD, Certara (Employee, Shareholder)Merck & Co., Inc. (Independent Contractor) Benjamin Guiastrennec, PharmD, PhD, Certara (Employee, Shareholder)Merck & Co., Inc. (Independent Contractor) Francesco Bellanti, PhD, Certara (Employee, Shareholder)Merck & Co., Inc. (Independent Contractor) Daniel Spellman, PhD, Merck & Co., Inc. (Employee, Shareholder) Brad Roadcap, MS, Merck & Co., Inc. (Employee, Shareholder) Amy Espeseth, PhD, Merck & Co., Inc. (Employee, Shareholder) S. Aubrey Stoch, MD, Merck & Co., Inc. (Employee, Shareholder) Eseng Lai, MD, PhD, Merck & Co., Inc. (Employee, Shareholder) Kalpit A. Vora, PhD, Merck & Co., Inc. (Employee, Shareholder) Antonios O. Aliprantis, MD, PhD, Merck & Co., Inc. (Employee, Shareholder) Jeffrey R. Sachs, PhD, Merck & Co., Inc. (Employee, Shareholder)


2020 ◽  
Vol 222 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Erika Uusitupa ◽  
Matti Waris ◽  
Terho Heikkinen

Abstract Background There are scarce data on whether viral load affects the severity of respiratory syncytial virus (RSV) disease in outpatient children. Methods We analyzed the association between viral load and disease severity among children who participated in a prospective cohort study of respiratory infections. The children were examined and nasal swabs for the detection of RSV were obtained during each respiratory illness. Quantification of RSV load was based on the cycle threshold (Ct) value. For the primary analysis, the children were divided into 2 groups: higher (Ct < 27) and lower viral load (Ct ≥ 27). Results Among 201 episodes of RSV infection, children with higher viral load had significantly longer median durations of rhinitis (8 vs 6 days; P = .0008), cough (8 vs 6 days; P = .034), fever (2 vs 1 days; P = .018), and any symptom (10 vs 8 days; P = .024) than those with lower viral load. There were statistically significant negative correlations between the Ct values and durations of all measured symptoms. Conclusions Our findings support the concept that viral load drives the severity of RSV disease in children. Reducing the viral load by RSV antivirals might provide substantial benefits to outpatient children.


2020 ◽  
Vol 21 (5) ◽  
pp. 1831 ◽  
Author(s):  
Ruth Barral-Arca ◽  
Alberto Gómez-Carballa ◽  
Miriam Cebey-López ◽  
Xabier Bello ◽  
Federico Martinón-Torres ◽  
...  

Respiratory syncytial virus (RSV) is one of the major causes of acute lower respiratory tract infection worldwide. The absence of a commercial vaccine and the limited success of current therapeutic strategies against RSV make further research necessary. We used a multi-cohort analysis approach to investigate host transcriptomic biomarkers and shed further light on the molecular mechanism underlying RSV-host interactions. We meta-analyzed seven transcriptome microarray studies from the public Gene Expression Omnibus (GEO) repository containing a total of 922 samples, including RSV, healthy controls, coronaviruses, enteroviruses, influenzas, rhinoviruses, and coinfections, from both adult and pediatric patients. We identified > 1500 genes differentially expressed when comparing the transcriptomes of RSV-infected patients against healthy controls. Functional enrichment analysis showed several pathways significantly altered, including immunologic response mediated by RSV infection, pattern recognition receptors, cell cycle, and olfactory signaling. In addition, we identified a minimal 17-transcript host signature specific for RSV infection by comparing transcriptomic profiles against other respiratory viruses. These multi-genic signatures might help to investigate future drug targets against RSV infection.


Sign in / Sign up

Export Citation Format

Share Document