The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of theN-methyl-d-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway

2008 ◽  
Vol 27 (10) ◽  
pp. 2701-2713 ◽  
Author(s):  
Yalini Chandramohan ◽  
Susanne K. Droste ◽  
J. Simon C. Arthur ◽  
Johannes M. H. M. Reul
2016 ◽  
Vol 113 (17) ◽  
pp. 4830-4835 ◽  
Author(s):  
Emily A. Saunderson ◽  
Helen Spiers ◽  
Karen R. Mifsud ◽  
Maria Gutierrez-Mecinas ◽  
Alexandra F. Trollope ◽  
...  

Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5′-cytosine–phosphate–guanine-3′) sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental stimuli in terms of gene expression and behavior.


2012 ◽  
Vol 40 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Catherine Andreadi ◽  
Catherine Noble ◽  
Bipin Patel ◽  
Hong Jin ◽  
Maria M. Aguilar Hernandez ◽  
...  

The strength and duration of intracellular signalling pathway activation is a key determinant of the biological outcome of cells in response to extracellular cues. This has been particularly elucidated for the Ras/Raf/MEK [mitogen-activated growth factor/ERK (extracellular-signal-regulated kinase) kinase]/ERK signalling pathway with a number of studies in fibroblasts showing that sustained ERK signalling is a requirement for S-phase entry, whereas transient ERK signalling does not have this capability. A major unanswered question, however, is how a cell can sustain ERK activation, particularly when ERK-specific phosphatases are transcriptionally up-regulated by the pathway itself. A major point of ERK regulation is at the level of Raf, and, to sustain ERK activation in the presence of ERK phosphatases, sustained Raf activation is a requirement. Three Raf proteins exist in mammals, and the activity of all three is induced following growth factor stimulation of cells, but only B-Raf activity is maintained at later time points. This observation points to B-Raf as a regulator of sustained ERK activation. In the present review, we consider evidence for a link between B-Raf and sustained ERK activation, focusing on a potential role for the subcellular localization of B-Raf in this key physiological event.


Toxicology ◽  
2016 ◽  
Vol 357-358 ◽  
pp. 65-73 ◽  
Author(s):  
Adrianna Sławińska-Brych ◽  
Barbara Zdzisińska ◽  
Magdalena Dmoszyńska-Graniczka ◽  
Witold Jeleniewicz ◽  
Jacek Kurzepa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document