Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea

2010 ◽  
Vol 12 (2) ◽  
pp. 364-377 ◽  
Author(s):  
Kasia Piwosz ◽  
Jakob Pernthaler
2006 ◽  
Vol 3 (4) ◽  
pp. 1157-1202
Author(s):  
L. Dzierzbicka-Głowacka ◽  
L. Bielecka ◽  
S. Mudrak

Abstract. A population dynamics model for copepods is presented describing a seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdansk Deep). The copepod model was coupled with an one-dimensional physical and biological upper layer model for nutrients (total inorganic nitrogen, phosphate), phytoplankton, microzooplankton and an early juvenile of herring as predator. In this model, mesozooplankton (herbivorous copepods) has been introduced as animals having definite patterns of growth in successive stages, reproduction and mortality. The populations are represented by 6 cohorts in different developmental stages, thus assuming, that recruitment of the next generation occurs after a fixed period of adult life. The copepod model links trophic processes and population dynamics, and simulates individual growth within cohorts and the changes in biomass between cohorts. The simulations of annual cycles of copepods contain one complete generation of Pseudocalanus and two generations of Acartia in the whole column water, and indicate the importance of growth of older stages of 6 cohorts each species to total population biomass. The peaks of copepods biomass, main, at the turn of June and July for Pseudocalanus and smaller, in July for Acartia, lag that phytoplankton by ca. two mouths due to growth of cohorts in successive stages and egg production by females. The numerical results show that the investigated species could not be the main factor limiting the spring phytoplankton bloom in the Gdansk Deep, because the initial development was slow for Acartia and faster for Pseudocalanus, but main development formed after the bloom, in both cases. However, the simulated microzooplankton biomass was enough high to conclude, in our opinion, that, in this case, it was major cause limiting phytoplankton bloom. Model presented here is a next step in understanding how the population dynamics of a dominant species in the southern Baltic Sea interact with the environment.


2022 ◽  
Author(s):  
Karolina Leszczyńska ◽  
Karl Stattegger ◽  
Damian Moskalewicz ◽  
Robert Jagodziński ◽  
Mikołaj Kokociński ◽  
...  

Abstract Climate change and related sea-level rise pose significant threats to sandy lowland coasts, which account for approximately 30% of the global coastline. However, the role of key controlling factors responsible for the frequency and extent of extreme storm surge of inundation regime is not yet fully understood. Here, we present the longest to date, high-resolution sedimentary record of extreme storm surge flooding from the microtidal southern Baltic Sea, spanning two periods: 3.6-2.9 ka BP and 0.7 ka BP until present. Wetland sediments, including sandy event layers, were analyzed by sedimentological (grain size, loss-on-ignition, micromorphology), geochronological (14C, 210Pb, 137Cs), geochemical (XRF), mineralogical (heavy minerals) and micropaleontological (diatoms) methods. Our results revealed that both periods are characterized by high-frequency storm surge flooding in order of 1.3 – 4.2 events per century. They are correlated to widely recognized enhanced storminess periods in NW Europe and took place during both rising and fluctuating sea levels. The presented results show that the storm surge driven coastal inundation frequency and extent largely depend on the development of coastal barriers (e.g., beach ridges). Thus, in the context of the future coastal storm surge hazard, the protection of existing coastal barriers is essential.


2008 ◽  
Vol 39 (3) ◽  
pp. 229-236 ◽  
Author(s):  
R. Marks

The dissolved oxygen supersaturation in the surface waters was investigated as a factor influencing bubble formation in the southern Baltic Sea coastal waters in Warszów, Lubiatowo and Hel from 1995 to 2007. To quantify the changes of oxygen supersaturation, data were collected along transects using integrated dissolved oxygen and water temperature sensors, either mounted on a remotely operated platform or deployed manually. Data revealed that an excess of solar energy in the nutrient-rich Baltic Sea coastal waters caused an immediate warming of sea bed and bottom water, which induced gaseous supersaturation and enhanced biological production of oxygen by phytoplankton. Both processes increased the degree of dissolved oxygen saturation, which became highly supersaturated, especially during the spring and summer time. Such conditions are favourable for enhanced formation of bubbles in the water, which enhanced the release of gases (mostly oxygen) into the air. Gaseous evasion is, in particular, enhanced in the presence of breaking waves and whitecaps that are typically formed over coastal ridges and at the shore line. Laboratory experiments indicated that, with the increasing degree of dissolved oxygen supersaturation, both the number of bubbles produced in the water and their sizes increase.


2010 ◽  
Vol 7 (1) ◽  
pp. 55-82 ◽  
Author(s):  
L. Dzierzbicka-Glowacka ◽  
I. M. Żmijewska ◽  
S. Mudrak ◽  
J. Jakacki ◽  
A. Lemieszek

Abstract. This paper describes numerical simulations of the seasonal dynamics of Acartia spp. in the Southern Baltic Sea. The studies were carried out using a structured zooplankton population model adapted to Acartia spp. The population model with state variables for eggs, nauplii, five copepodites stages and adults was coupled with a marine ecosystem model. Four state variables for the carbon cycle represent the functional units of phytoplankton, pelagic detritus, benthic detritus, and bulk zooplankton, which represent all zooplankton other than the structured population. The annual cycle simulated for 2000 under realistic weather and hydrographic conditions was studied with the coupled ecosystem–zooplankton model applied to a water column in the Gdańsk Gulf (Southern Baltic Sea). The vertical profiles of selected state variables were compared to the physical forcing to study differences between bulk and structured zooplankton biomass. The simulated population dynamics of Acartia spp. and zooplankton as one biomass state variable were compared with observations in the Gdańsk Gulf. Simulated generation times are more affected by temperature than food conditions except during the spring phytoplankton bloom. The numerical studies are a following step in understanding how the population dynamics of a dominant species in the Southern Baltic Sea interact with the environment.


Sign in / Sign up

Export Citation Format

Share Document