The effects of underfeeding on whole-body carbohydrate partitioning, thermogenesis and uncoupling protein 3 expression in human skeletal muscle

2007 ◽  
Vol 9 (5) ◽  
pp. 669-678 ◽  
Author(s):  
N. Seevaratnam ◽  
A. J. Bennett ◽  
J. Webber ◽  
I. A. Macdonald
2003 ◽  
Vol 111 (4) ◽  
pp. 479-486 ◽  
Author(s):  
Matthijs K.C. Hesselink ◽  
Paul L. Greenhaff ◽  
Dimitru Constantin-Teodosiu ◽  
Eric Hultman ◽  
Wim H.M. Saris ◽  
...  

2006 ◽  
Vol 60 (5) ◽  
pp. 569-575 ◽  
Author(s):  
Petr Brauner ◽  
Pavel Kopecky ◽  
Pavel Flachs ◽  
Ondrej Kuda ◽  
Jaroslav Vorlicek ◽  
...  

2000 ◽  
Vol 279 (4) ◽  
pp. E806-E814 ◽  
Author(s):  
Henriette Pilegaard ◽  
George A. Ordway ◽  
Bengt Saltin ◽  
P. Darrell Neufer

Exercise training elicits a number of adaptive changes in skeletal muscle that result in an improved metabolic efficiency. The molecular mechanisms mediating the cellular adaptations to exercise training in human skeletal muscle are unknown. To test the hypothesis that recovery from exercise is associated with transcriptional activation of specific genes, six untrained male subjects completed 60–90 min of exhaustive one-legged knee extensor exercise for five consecutive days. On day 5, nuclei were isolated from biopsies of the vastus lateralis muscle of the untrained and the trained leg before exercise and from the trained leg immediately after exercise and after 15 min, 1 h, 2 h, and 4 h of recovery. Transcriptional activity of the uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase 4 (PDK4), and heme oxygenase-1 (HO-1) genes (relative to β-actin) increased by three- to sevenfold in response to exercise, peaking after 1–2 h of recovery. Increases in mRNA levels followed changes in transcription, peaking between 2 and 4 h after exercise. Lipoprotein lipase and carnitine pamitoyltransferase I gene transcription and mRNA levels showed similar but less dramatic induction patterns, with increases ranging from two- to threefold. In a separate study, a single 4-h bout of cycling exercise ( n = 4) elicited from 5 to >20-fold increases in UCP3, PDK4, and HO-1 transcription, suggesting that activation of these genes may be related to the duration or intensity of exercise. These data demonstrate that exercise induces transient increases in transcription of metabolic genes in human skeletal muscle. Moreover, the findings suggest that the cumulative effects of transient increases in transcription during recovery from consecutive bouts of exercise may represent the underlying kinetic basis for the cellular adaptations associated with exercise training.


Author(s):  
Nathan Hodson ◽  
Michael Mazzulla ◽  
Maksym N. H. Holowaty ◽  
Dinesh Kumbhare ◽  
Daniel R. Moore

Following anabolic stimuli (mechanical loading and/or amino acid provision) the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, translocates toward the cell periphery. However, it is unknown if mTORC1-mediated phosphorylation events occur in these peripheral regions or prior to translocation (i.e. in central regions). We therefore aimed to determine the cellular location of a mTORC1-mediated phosphorylation event, RPS6Ser240/244, in human skeletal muscle following anabolic stimuli. Fourteen young, healthy males either ingested a protein-carbohydrate beverage (0.25g/kg protein, 0.75g/kg carbohydrate) alone (n=7;23±5yrs;76.8±3.6kg;13.6±3.8%BF, FED) or following a whole-body resistance exercise bout (n=7;22±2yrs;78.1±3.6kg;12.2±4.9%BF, EXFED). Vastus lateralis muscle biopsies were obtained at rest (PRE) and 120 and 300min following anabolic stimuli. RPS6Ser240/244 phosphorylation measured by immunofluorescent staining or immunoblot was positively correlated (r=0.76, p<0.001). Peripheral staining intensity of p-RPS6Ser240/244 increased above PRE in both FED and EXFED at 120min (~54% and ~138% respectively, p<0.05) but was greater in EXFED at both post-stimuli time points (p<0.05). The peripheral-central ratio of p-RPS6240/244 staining displayed a similar pattern, even when corrected for total RPS6 distribution, suggesting RPS6 phosphorylation occurs to a greater extent in the periphery of fibers. Moreover, p-RPS6Ser240/244 intensity within paxillin-positive regions, a marker of focal adhesion complexes, was elevated at 120min irrespective of stimulus (p=0.006) before returning to PRE at 300min. These data confirm that RPS6Ser240/244 phosphorylation occurs in the region of human muscle fibers to which mTOR translocates following anabolic stimuli and identifies focal adhesion complexes as a potential site of mTORC1 regulation in vivo.


2007 ◽  
Vol 117 (7) ◽  
pp. 1995-2003 ◽  
Author(s):  
Cheol Soo Choi ◽  
Jonathan J. Fillmore ◽  
Jason K. Kim ◽  
Zhen-Xiang Liu ◽  
Sheene Kim ◽  
...  

2019 ◽  
Vol 663 ◽  
pp. 239-248 ◽  
Author(s):  
S. McBride ◽  
L. Wei-LaPierre ◽  
F. McMurray ◽  
M. MacFarlane ◽  
X. Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document