Effect of Environmental Factors and Gender on the Heritability of Bone Mineral Density and Bone Size

2006 ◽  
Vol 70 (4) ◽  
pp. 428-438 ◽  
Author(s):  
M. Y. M. Ng ◽  
P. C. Sham ◽  
A. D. Paterson ◽  
V. Chan ◽  
A. W. C. Kung
2005 ◽  
Vol 0 (0) ◽  
pp. 060721082338049
Author(s):  
M. Y. M. Ng ◽  
P. C. Sham ◽  
A. D. Paterson ◽  
V. Chan ◽  
A. W. C. Kung

2011 ◽  
Vol 301 (6) ◽  
pp. E1191-E1197 ◽  
Author(s):  
Chandrasekhar Kesavan ◽  
Jon E. Wergedal ◽  
K.-H. William Lau ◽  
Subburaman Mohan

To establish a causal role for locally produced IGF-I in the mechanical strain response in the bone, we have generated mice with conditional disruption of the insulin-like growth factor (IGF) I gene in type 1α2 collagen-expressing cells using the Cre-loxP approach. At 10 wk of age, loads adjusted to account for bone size difference were applied via four-point bending or axial loading (AL) in mice. Two wk of bending and AL produced significant increases in bone mineral density and bone size at the middiaphysis of wild-type (WT), but not knockout (KO), mice. In addition, AL produced an 8–25% increase in trabecular parameters (bone volume-tissue volume ratio, trabecular thickness, and trabecular bone mineral density) at the secondary spongiosa of WT, but not KO, mice. Histomorphometric analysis at the trabecular site revealed that AL increased osteoid width by 60% and decreased tartrate-resistance acidic phosphatase-labeled surface by 50% in the WT, but not KO, mice. Consistent with the in vivo data, blockade of IGF-I action with inhibitory IGF-binding protein (IGFBP4) in vitro completely abolished the fluid flow stress-induced MC3T3-E1 cell proliferation. One-way ANOVA revealed that expression levels of EFNB1, EFNB2, EFNA2, EphB2, and NR4a3 were different in the loaded bones of WT vs. KO mice and may, in part, be responsible for the increase in bone response to loading in the WT mice. In conclusion, IGF-I expressed in type 1 collagen-producing bone cells is critical for converting mechanical signal to anabolic signal in bone, and other growth factors cannot compensate for the loss of local IGF-I.


PEDIATRICS ◽  
1993 ◽  
Vol 91 (6) ◽  
pp. 1127-1130
Author(s):  
Antero Kotaniemi ◽  
Anneli Savolainen ◽  
Hannu Kautiainen ◽  
Heikki Kröger

Study objective. To investigate the degree and determinants of osteopenia in juvenile chronic polyarthritis. Design. Retrospective case-control study of central bone mineral density. Setting. Rheumatism Foundation Hospital and Kuopio University Hospital, Finland. Subjects. A sample of 43 girls aged 7 to 19 with juvenile chronic polyarthritis treated with systemic glucocorticoids and a control sample of 44 healthy girls matched for age. Main outcome measures. Bone mineral density and bone size (width) measured by dual-energy x-ray absorptiometry and bone volumetric density calculated as an approximation of true bone density at both the lumbar spine and femoral neck. Results. The girls with juvenile chronic arthritis had reduced bone mineral density, bone size, and bone volumetric density at both the lumbar spine and femoral neck (statistically significant findings, P = .022 for the bone size of the femoral neck and P < .001 for the other parameters). At the spine, the mean bone mineral density was 80%, the mean bone size 89%, and the mean bone volumetric density 89% of the values in the control group. At the femoral neck, the values were 78%, 93%, and 83%, respectively. The groups were matched for age, but the girls with arthritis were smaller and lighter. In the juvenile arthritis group, the femoral bone mineral density and bone volumetric density and the spinal bone width correlated negatively with the mean glucocorticoid dose. Conclusion. Axial bone mineral density is clearly reduced in severe juvenile polyarthritis and is mediated by both decreased bone volumetric density and diminished growth.


Author(s):  
Narayan Yoganandan ◽  
Frank A. Pintar ◽  
Recai Aktay ◽  
Glenn Paskoff ◽  
Barry S. Shender

While numerous studies exist quantifying the bone mineral content of the human lumber vertebrae, such information is not available for the cervical spine. This study determined the bone mineral densities of cervical vertebrae. Adult healthy human volunteers, ages ranging from 18 to 40 years, underwent quantitative computed tomography scanning of the neck. BMD data were divided according to subject weight (above and below 50th percentile, termed low and heavy mass) and gender. Low-mass subjects did not consistently have higher bone mineral density at all levels of the cervical column. Bone mineral were higher (259 ± 6 mg/cc) for females than males (247 ± 8 mg/cc); for the entire ensemble the mean density was 253 ± 9 mg/cc. Altered strength of cervical vertebrae coupled with the increased mobility of the disc at the inferior levels of the neck may explain regional biomechanical differences and subsequent physiologic effects secondary to aging. This study quantifies BMD of the human neck vertebrae and offers explanations to the biomechanical behaviors of the human cervical spine.


1996 ◽  
Vol 6 (S1) ◽  
pp. 289-289
Author(s):  
M. E. Cohen-Solal ◽  
M. Omouri ◽  
E. Saussay ◽  
D. Kuntz ◽  
M. C. de Vernejou

2019 ◽  
Vol 19 (2) ◽  
pp. 238-245 ◽  
Author(s):  
Stephan N. Salzmann ◽  
Courtney Ortiz Miller ◽  
John A. Carrino ◽  
Jingyan Yang ◽  
Jennifer Shue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document