scholarly journals INDUCTION OF FLOWERING IN WILD LETTUCE (LACTUCA SERRIOLA L.). III. VERNALIZATION-DEVERNALIZATION CYCLES IN BURIED SEEDS

1982 ◽  
Vol 91 (4) ◽  
pp. 661-668 ◽  
Author(s):  
S. D. PRINCE ◽  
M. K. MARKS
Oikos ◽  
1981 ◽  
Vol 36 (3) ◽  
pp. 326 ◽  
Author(s):  
Malcolm Marks ◽  
Stephen Prince

2019 ◽  
Vol 70 (8) ◽  
pp. 709 ◽  
Author(s):  
Aakansha Chadha ◽  
Singarayer Florentine ◽  
Bhagirath S. Chauhan ◽  
Benjamin Long ◽  
Mithila Jayasundera ◽  
...  

Wild lettuce (Lactuca serriola L.) is a significant emerging agricultural and environmental weed in many countries. This invasive species is now naturalised in Australia and is claimed to cause significant losses within the agricultural industry. Sustainable management of wild lettuce has been hampered by a lack of detailed knowledge of its seed ecology. Laboratory-based studies were performed to examine the potential influence of environmental factors including temperature and light conditions, salinity, pH, moisture availability and burial depth on the germination and emergence of two spatially distant populations of wild lettuce. Results suggested that the germination of wild lettuce seeds occurred across a broad range of temperature conditions (12-h cycle: 30°C/20°C, 25°C/15°C and 17°C/7°C) for both populations. We also found that these seeds are non-photoblastic; germination was not affected by darkness, with >80% germination in darkness for both populations at all tested temperature ranges. Germination significantly declined as salinity and osmotic stress increased for both populations, with seeds from the Tempy population were more affected by NaCl >100 mM than seeds from Werribee, but in neither population was there any observed effect of pH on germination (>80% germination in both populations at all tested pH ranges). For both populations, germination significantly decreased as burial depth increased; however, the two populations differed with regard to response to burial depth treatment, whereby seeds from the Tempy population had higher emergence than those from Werribee at 0.5 cm burial depth. These results suggest that light-reducing management techniques such as mulching or use of crop residues will be unsuccessful for preventing germination of wild lettuce. By contrast, burial of seeds at a depth of at least 4 cm will significantly reduce their emergence.


HortScience ◽  
2012 ◽  
Vol 47 (2) ◽  
pp. 179-184 ◽  
Author(s):  
James D. McCreight ◽  
Yong-Biao Liu

The lettuce aphid, Nasonovia ribisnigri Mosley (Hemiptera: Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce production areas around the world. Resistance to lettuce aphid biotype 0 (Nr:0) was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete, i.e., virtually no aphids survived, and genetically dominant to partial resistance in L. virosa accession IVT 273. Complete and partial resistances to Nr:0 were conditioned by two alleles, Nr (complete resistance) and nr (partial resistance), but the genetic relationship to susceptibility was not reported. We previously reported two new potential sources of unique genes for resistance to Nr:0 in Lactuca serriola L. accession PI 491093 and L. virosa PI 274378. We report on the genetic and phenotypic nature of resistance to Nr:0 in these two wild lettuce accessions. Resistance to Nr:0 in PI 274378 is complete and allelic to complete resistance in IVT 280. Resistance to Nr:0 in PI 491093 was partial, recessive to complete resistance in ‘Barcelona’ that was derived from IVT 280, but dominant to susceptibility in ‘Salinas’. We propose the revised gene symbols for resistance to Nr:0: Nr:0C for complete resistance and Nr:0P for partial resistance, which was originally designated as nr but may now be regarded as the symbol for susceptibility to all strains of lettuce aphid. The dominance relationships among these three alleles are Nr:0C (in IVT 280, ‘Barcelona’) > Nr:0P (in PI 491093) > nr (in susceptible genotypes). Expression of partial resistance in PI 491093 was variable in controlled infestation tests, but in a naturally infested field test provided a potentially useful level of resistance to Nr:0. Partial resistance, where complete resistance has not been widely deployed, may either alone or as a component of integrated pest management delay or prevent emergence of genotypes that overcome complete resistance controlled by Nr:0C.


Oikos ◽  
1982 ◽  
Vol 38 (2) ◽  
pp. 242 ◽  
Author(s):  
Malcolm K. Marks ◽  
Stephen D. Prince

1978 ◽  
Vol 81 (2) ◽  
pp. 265-277 ◽  
Author(s):  
S. D. PRINCE ◽  
M. K. MARKS ◽  
R. N. CARTER

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2157
Author(s):  
Aakansha Chadha ◽  
Singarayer Florentine

Lactuca serriola L. (wild lettuce) is a highly invasive C3 weed in many countries, including Australia, Canada, and the USA. This weed is a severe threat to agricultural systems, especially in crops grown with reduced or no-tillage approaches, which commonly include wheat, cereals and pulses. Owing to the vertical orientation of its leaves in the north-south plane and its root architecture, L. serriola can maintain high water use efficiency under drought conditions, giving it the ability to expand its range under a drying climate. Each plant can produce up to 100,000 seeds which have no primary dormancy and form a short-term seedbank lasting up to three years. Most seedlings emerge in autumn and overwinter as a rosette, with a small flush of emergence in spring depicting staggered germination. Research into control methods for this weed has been performed, and these methods include chemical herbicides applied alone and in combination, the establishment of plant competition, tillage, mowing and bioherbicide. Herbicides can provide effective control when applied in the seedling or rosette stage; however, spring germination is difficult to control, as it skips the rosette stage. Some biotypes are now resistant to ALS inhibitor and synthetic auxins, causing concern regarding using herbicides. A dedicated integrated management plan for 3–4 years is recommended for the control of this troublesome species. This review will explore the biology, ecology, distribution, current control techniques and previous research on this weed, allowing us to make recommendations for its future research and management.


2015 ◽  
pp. 3-25
Author(s):  
E. O. Golovina

The museum-preserve «The Kulikovo Field» is situated in the northern part of the Central Russian Upland within the forest-steppe zone near its northern border. There are a lot of abandoned fields, most of them left fallow since 1990–2000 years; the exact age of the old fields is unknown. Using the Braun-Blanquet approach as well as the method of K. Kopecký and S. Hejný (Kopecký, Hejný, 1974; Kopecký, 1992), the classification of the old-field vegetation of the central part of the museum-preserve was carried out. One derivate community, 2 basal communities (one of them with two variants), 3 communities and one association with three variants have been identified. The derivate community Conyza canadensis­ [Artemisietea vulgaris/Stellarietea mediae] is dominated by annual and biennial ruderal species: Conyza canadensis, Lactuca serriola and Carduus acanthoides. The association Convolvulo arvensis–Elytrigietum repentis is heterogeneous both in its floristic and subdominant composition and it can be divided into 3 variants. The variant typica represents monodominant communities where Elytrigia repens prevails. The variant Lactuca serriola is characterized by high constancy of Conyza canadensis, Lactuca serriola and some other ruderal plants and it represents coenoses dominated by Elytrigia repens with subdominants such as Lactuca serriola, Senecio jacobaea and Pilosella spp., mainly P. bauhini. The variant Cichorium intybus is dominated by Elytrigia repens with a subdominant Cichorium intybus; some mesophilous meadow species are often present. Variants Melilotus officinalis and Sonchus arvensis of the basal communityElytrigia repens–Cichorium intybus [Artemisietea vulgaris] are dominated by Cichorium intybus, Poa angustifolia and Elytrigia repens, the first of them also by Melilotus officinalis, Artemisia absinthium, and the second by Carduus acanthoides and Calamagrostis epigeios. Unlike the foregoing syntaxa the basal community Elytrigia repens–Cichorium intybus [Artemisietea vulgaris] is characterized by relative high constancy of some species pertaining to the order Galietalia veri, namely Fragaria viridis, Galium verum, Potentilla argentea. These species and also Poa angustifolia are the first steppificated meadow plants that appear in the old field communities under investigation. The community Pilosella bauhini [Onopordion acanthii] is dominated by Pilosella spp., mainly by P. bauhini that sometimes replaced by some ruderal plants, e. g. Achillea nobilis or Cichorium intybus. The peculiarity of this community is the low constancy and abundance of Elytrigia repens. The species of the orders Galietalia veri and Arrhenatheretalia play much noticeable role in the other syntaxa mentioned below, so these syntaxa are between the natural and synanthropic vegetation. The community Leucanthemum vulgare–Galium mollugo [Onopordion acanthii/Molinio-Arrhenatheretea] is distinguished by high abundance and constancy of some mesophilous and xeromesophilous meadow plants (Leucanthemum vulgare, Galium mollugo, Phleum pratense etc.). The community Artemisia marschalliana [Onopordion acanthii/Galietalia veri] is dominated mostly by Leontodon hispidus and Pilosella spp.; its peculiarity is a relatively high constancy of species common in the local steppificated meadows. The basal community Poa angustifolia [Galietalia veri/Artemisietea vulgaris] represents monodominant communities where Poa angustifolia prevails. Annual, biennial and some perennial ruderal species are rare in this variant, unlike most of the syntaxa mentioned above. The common feature of the last three syntaxa is subdominance of Fragaria viridis. It is known that the floristic composition of communities is changed during an old-field succession: the percentage of annual and biennial species declines and that of species pertaining to the classes of natural vegetation increases (Bonet, Pausas, 2007; Yamalov et al., 2008; Pankratova, Gannibal, 2009). Using the life-form and phytosociological spectrum of the syntaxa analysis an attempt to evaluate succession status of the described communities was made (tab. 9, 10). Based upon the results of this analysis, it is possible to suggest that the derivate community Conyza canadensis [Artemisietea vulgaris/Stellarietea mediae] is the earliest stage one can find in the investigated old fields. The variants Lactuca serriola and typica of the association Convolvulo arvensis–Elytrigietum repentis and the community Pilosella bauhini [Onopordion acanthii] are the next in the series. It seems that Pilosella spp. (P. bauhini and probably some other species of this genus) outcompete the pioneer species of initial stages, like Elytrigia repens, in some cases. The basal community Poa angustifolia [Galietalia veri / Artemisietea vulgaris] seems to be the most advanced stage: the percentage of annuals and biennials is minimal, and that of species pertaining to the syntaxa of natural vegetation of the high ranks, especially to the order Galietalia veri, increases greatly. Species richness of the communities is minimal at the most early stage, which is the peculiarity of the old-field vegetation (Pankratova, Gannibal, 2009; Ovcharova, Yamalov, 2013). Similar phenomenon was also noticed at the succession stages where strong dominant (Elytrigia repens or Poa angustifolia) pre­vails, regardless of how much advanced these stages are, the fact mentioned earlier (Prach, 1985). Species richness attains maximum at those stages of succession where the communities are polydominant and contain both early- and late-successional species, that was also previously described (Meiners et al., 2007).


Sign in / Sign up

Export Citation Format

Share Document