scholarly journals Regulation of dopaminergic neuron firing by heterogeneous dopamine autoreceptors in the substantia nigra pars compacta

2011 ◽  
Vol 116 (6) ◽  
pp. 966-974 ◽  
Author(s):  
Jin Young Jang ◽  
Miae Jang ◽  
Shin Hye Kim ◽  
Ki Bum Um ◽  
Yun Kyung Kang ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4627
Author(s):  
Richard Jayaraj ◽  
Rami Beiram ◽  
Sheikh Azimullah ◽  
Nagoor M. F. ◽  
Shreesh Ojha ◽  
...  

Parkinson’s disease is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and the resultant loss of dopamine in the striatum. Various studies have shown that oxidative stress and neuroinflammation plays a major role in PD progression. In addition, the autophagy lysosome pathway (ALP) plays an important role in the degradation of aggregated proteins, abnormal cytoplasmic organelles and proteins for intracellular homeostasis. Dysfunction of ALP results in the accumulation of α-synuclein and the loss of dopaminergic neurons in PD. Thus, modulating ALP is becoming an appealing therapeutic intervention. In our current study, we wanted to evaluate the neuroprotective potency of noscapine in a rotenone-induced PD rat model. Rats were administered rotenone injections (2.5 mg/kg, i.p.,) daily followed by noscapine (10 mg/kg, i.p.,) for four weeks. Noscapine, an iso-qinulinin alkaloid found naturally in the Papaveraceae family, has traditionally been used in the treatment of cancer, stroke and fibrosis. However, the neuroprotective potency of noscapine has not been analyzed. Our study showed that administration of noscapine decreased the upregulation of pro-inflammatory factors, oxidative stress, and α-synuclein expression with a significant increase in antioxidant enzymes. In addition, noscapine prevented rotenone-induced activation of microglia and astrocytes. These neuroprotective mechanisms resulted in a decrease in dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Further, noscapine administration enhanced the mTOR-mediated p70S6K pathway as well as inhibited apoptosis. In addition to these mechanisms, noscapine prevented a rotenone-mediated increase in lysosomal degradation, resulting in a decrease in α-synuclein aggregation. However, further studies are needed to further develop noscapine as a potential therapeutic candidate for PD treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meizhu Huang ◽  
Dapeng Li ◽  
Xinyu Cheng ◽  
Qing Pei ◽  
Zhiyong Xie ◽  
...  

AbstractAppetitive locomotion is essential for animals to approach rewards, such as food and prey. The neuronal circuitry controlling appetitive locomotion is unclear. In a goal-directed behavior—predatory hunting, we show an excitatory brain circuit from the superior colliculus (SC) to the substantia nigra pars compacta (SNc) to enhance appetitive locomotion in mice. This tectonigral pathway transmits locomotion-speed signals to dopamine neurons and triggers dopamine release in the dorsal striatum. Synaptic inactivation of this pathway impairs appetitive locomotion but not defensive locomotion. Conversely, activation of this pathway increases the speed and frequency of approach during predatory hunting, an effect that depends on the activities of SNc dopamine neurons. Together, these data reveal that the SC regulates locomotion-speed signals to SNc dopamine neurons to enhance appetitive locomotion in mice.


2020 ◽  
Vol 88 (09) ◽  
pp. 591-599
Author(s):  
Peter Urban ◽  
Bjorn Falkenburger ◽  
Wolfgang H. Jost ◽  
Gerhard Ransmayr ◽  
Peter Riederer ◽  
...  

ZusammenfassungEs besteht Konsens, dass das neuropathologische Merkmal des idiopathischen Parkinson-Syndroms (IPS) der neuronale Zellverlust der Substantia nigra pars compacta (SNc) in Verbindung mit einer Lewy-Pathologie ist. Die transsynaptische Ausbreitung der Lewy-Pathologie wird als wesentlich in der Parkinson-Pathogenese angesehen. Daher ist die Kenntnis präexistenter neuroanatomischer Verbindungen der SNc wesentlich. Wir beschreiben hier neuere tierexperimentelle Befunde zu den afferenten und efferenten Projektionen der SNc und diskutieren die Evidenz für und gegen die sequentielle transsynaptische Ausbreitung der Lewy-Pathologie in der Pathogenese des IPS.


Author(s):  
Lu Wang ◽  
Yayun Yan ◽  
Liyao Zhang ◽  
Yan Liu ◽  
Ruirui Luo ◽  
...  

AbstractNeuromelanin (NM) is a dark pigment that mainly exists in neurons of the substantia nigra pars compacta (SNc). In Parkinson disease (PD) patients, NM concentration decreases gradually with degeneration and necrosis of dopamine neurons, suggesting potential use as a PD biomarker. We aimed to evaluate associations between NM concentration in in vivo SN and PD progression and different motor subtypes using NM magnetic resonance imaging (NM-MRI). Fifty-four patients with idiopathic PD were enrolled. Patients were divided into groups by subtypes with different clinical symptoms: tremor dominant (TD) group and postural instability and gait difficulty (PIGD) group. Fifteen healthy age-matched volunteers were enrolled as controls. All subjects underwent clinical assessment and NM-MRI examination. PD patients showed significantly decreased contrast-to-noise ratio (CNR) values in medial and lateral SN (P < 0.05) compared to controls. CNR values in lateral SN region decreased linearly with PD progression (P = 0.001). PIGD patients showed significant decreases in CNR mean values in lateral SN compared to TD patients (P = 0.004). Diagnostic accuracy of using lateral substantia nigra (SN) in TD and PIGD groups was 79% (sensitivity 76.5%, specificity 78.6%). NM concentration in PD patients decreases gradually during disease progression and differs significantly between PD subtypes. NM may be a reliable biomarker for PD severity and subtype identification.


Sign in / Sign up

Export Citation Format

Share Document