MORPHOMETRIC CHARACTERISTICS OF THE VENTRAL REGION IN THE SUBSTANTIA NIGRA PARS COMPACTA IN PARKINSON'S DISEASE

2018 ◽  
Vol 27 (3) ◽  
pp. 4-8
Author(s):  
V.N. Sal'kov ◽  
Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2580
Author(s):  
Sarah Plum ◽  
Britta Eggers ◽  
Stefan Helling ◽  
Markus Stepath ◽  
Carsten Theiss ◽  
...  

The pathological hallmark of Parkinson’s disease (PD) is the loss of neuromelanin-containing dopaminergic neurons within the substantia nigra pars compacta (SNpc). Additionally, numerous studies indicate an altered synaptic function during disease progression. To gain new insights into the molecular processes underlying the alteration of synaptic function in PD, a proteomic study was performed. Therefore, synaptosomes were isolated by density gradient centrifugation from SNpc tissue of individuals at advanced PD stages (N = 5) as well as control subjects free of pathology (N = 5) followed by mass spectrometry-based analysis. In total, 362 proteins were identified and assigned to the synaptosomal core proteome. This core proteome comprised all proteins expressed within the synapses without regard to data analysis software, gender, age, or disease. The differential analysis between control subjects and PD cases revealed that CD9 antigen was overrepresented and fourteen proteins, among them Thymidine kinase 2 (TK2), mitochondrial, 39S ribosomal protein L37, neurolysin, and Methionine-tRNA ligase (MARS2) were underrepresented in PD suggesting an alteration in mitochondrial translation within synaptosomes.


1994 ◽  
Vol 87 (4) ◽  
pp. 343-348
Author(s):  
I. Moroo ◽  
T. Yamada ◽  
H. Makino ◽  
I. Tooyama ◽  
P. L. McGeer ◽  
...  

1993 ◽  
Vol 329 (3) ◽  
pp. 328-336 ◽  
Author(s):  
William D. Hill ◽  
Motomi Arai ◽  
Jeffrey A. Cohen ◽  
John Q. Trojanowski

2021 ◽  
Author(s):  
Affif ZACCARIA ◽  
Paola Antinori Malaspina ◽  
Virginie Licker ◽  
Enikö Kovari ◽  
Johannes A Lobrinus ◽  
...  

Abstract Background Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc) selectively and progressively degenerate in Parkinson’s disease (PD). Until now, molecular analyses of DA neurons in PD have been limited to genomic and transcriptomic approaches, whereas, to the best of our knowledge, no proteomic or combined polyomic study examining the protein profile of these neurons, is currently available. Methods In this exploratory study, we used laser microdissection to extract DA neurons from 10 human SNpc samples obtained at autopsy in PD patients and control subjects. Extracted RNA and proteins were identified by RNA sequencing and nano-LC-MS/MS, respectively, and the differential expression between the PD and control group was assessed. Results Qualitative analyses confirmed that the microdissection protocol preserves the integrity of our samples and offers access to specific molecular pathways. This polyomic analysis highlighted differential expression of 52 genes and 33 proteins, including molecules of interest already known to be dysregulated in PD, such as LRP2, PNMT, CXCR4, MAOA and CBLN1 genes, or the Aldehyde dehydrogenase 1 protein. On the other hand, despite the same samples were used for both analyses, correlation between RNA and protein expression was low, as exemplified by the CST3 gene encoding for the cystatin C protein. Conclusion This is the first exploratory study analyzing both gene and protein expression of LMD-dissected DA neurons from SNpc in PD. Although correlation between RNA and protein expressions was limited, this polyomic study provides an extensive and integrated overview of molecular changes identified in the PD SNpc and may offer novel insights into specific pathological processes at work in PD degeneration.


2021 ◽  
Author(s):  
Federico Ferraro ◽  
Christina Fevga ◽  
Vincenzo Bonifati ◽  
Wim Mandemakers ◽  
Ahmed Mahfouz ◽  
...  

Several studies have analyzed gene expression profiles in the substantia nigra to better understand the pathological mechanisms causing Parkinson's disease (PD). However, the concordance between the identified gene signatures in these individual studies was generally low. This might be caused by a change in cell type composition as loss of dopaminergic neurons in the substantia nigra pars compacta is a hallmark of PD. Through an extensive meta-analysis of nine previously published microarray studies, we demonstrated that a big proportion of the detected differentially expressed genes was indeed caused by cyto-architectural alterations due to the heterogeneity in the neurodegenerative stage and/or technical artifacts. After correcting for cell composition, we identified a common signature that deregulated the previously unreported ammonium transport, as well as known biological processes including bioenergetic pathways, response to proteotoxic stress, and immune response. By integrating with protein-interaction data, we shortlisted a set of key genes, such as LRRK2, PINK1, and PRKN known to be related to PD; others with compelling evidence for their role in neurodegeneration, such as GSK3β, WWOX, and VPC; as well as novel potential players in the PD pathogenesis, including NTRK1, TRIM25, ELAVL1. Together, these data showed the importance of accounting for cyto-architecture in these analyses and highlight the contribution of multiple cell types and novel processes to PD pathology providing potential new targets for drug development.


2019 ◽  
Author(s):  
Apoorva Safai ◽  
Shweta Prasad ◽  
Jitender Saini ◽  
Pramod Kumar Pal ◽  
Madhura Ingalhalikar

AbstractMicrostructural changes associated with degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNc) in Parkinson’s disease (PD) have been studied using Diffusion Tensor Imaging (DTI). However, these studies show inconsistent results, mainly due to methodological variations in delineation of SNc. To mitigate this, our work aims to construct a probabilistic atlas of SNc based on a Neuromelanin sensitive MRI (NMS-MRI) sequence and demonstrate its applicability to investigate microstructural changes on a large dataset of PD. Using manual segmentation and deformable registrations, we create a novel SNc atlas in the MNI space using NMS-MRI sequences of 27 healthy controls (HC). We employ this atlas to evaluate the diffusivity and anisotropy measures, derived from diffusion MRI in the SNc of 135 patients with PD and 99 HCs. Our observations of significantly increased diffusivity measures provide evidence of microstructural abnormalities in PD. However, no changes in the anisotropy were observed. Moreover, the asymmetry in abnormalities is prominent as the left SNc showed significant increase in diffusivity, and a reduction in FA when compared to the right SNc. Further the diffusivity and FA values also demonstrated a trend when correlated with the PD severity scores. Overall, from this work we establish a normative baseline for the SNc region of interest using NMS-MRI while the application on PD data emphasizes on the contribution of diffusivity measures rather than anisotropy of white matter in PD.


Author(s):  
Chiara Milanese ◽  
Sylvia Gabriels ◽  
Sander Barnhoorn ◽  
Silvia Cerri ◽  
Ayse Ulusoy ◽  
...  

AbstractAlterations in the metabolism of iron and its accumulation in the substantia nigra pars compacta accompany the pathogenesis of Parkinson’s disease (PD). Changes in iron homeostasis also occur during aging, which constitutes a PD major risk factor. As such, mitigation of iron overload via chelation strategies has been considered a plausible disease modifying approach. Iron chelation, however, is imperfect because of general undesired side effects and lack of specificity; more effective approaches would rely on targeting distinctive pathways responsible for iron overload in brain regions relevant to PD and, in particular, the substantia nigra. We have previously demonstrated that the Transferrin/Transferrin Receptor 2 (TfR2) iron import mechanism functions in nigral dopaminergic neurons, is perturbed in PD models and patients, and therefore constitutes a potential therapeutic target to halt iron accumulation. To validate this hypothesis, we generated mice with targeted deletion of TfR2 in dopaminergic neurons. In these animals, we modeled PD with multiple approaches, based either on neurotoxin exposure or alpha-synuclein proteotoxic mechanisms. We found that TfR2 deletion can provide neuroprotection against dopaminergic degeneration, and against PD- and aging-related iron overload. The effects, however, were significantly more pronounced in females rather than in males. Our data indicate that the TfR2 iron import pathway represents an amenable strategy to hamper PD progression. Data also suggest, however, that therapeutic strategies targeting TfR2 should consider a potential sexual dimorphism in neuroprotective response.


Sign in / Sign up

Export Citation Format

Share Document