Determination of thermal stress in concrete pavements by means of measurement of in-situ strains

Strain ◽  
1982 ◽  
Vol 18 (1) ◽  
pp. 15-27 ◽  
Author(s):  
TU HSIANG-TE
2008 ◽  
Vol 23 (7) ◽  
pp. 1840-1848 ◽  
Author(s):  
Qing-Zhi Shi ◽  
Yong-Chang Liu ◽  
Zhi-Ming Gao ◽  
Qian Zhao ◽  
Zong-Qing Ma

Differential thermal analysis, as the main means of measurement, was used to prepare bulk MgB2 samples and monitor the sintering reaction process. Combined with microstructure observation by scanning electron microscopy and x-ray diffraction analysis, the formation process of MgB2 phase at the temperature before Mg melting was summarized. Additionally, a new kinetic analysis (a variant on the Flynn–Wall–Ozawa) method under nonisothermal conditions was used to determine that the reaction between Mg and B powders involves random nucleation followed by an instantaneous growth of nuclei (Avrami–Erofeev equation, n = 2), which can properly explain the in situ formation process of bulk MgB2 at the temperature before Mg melting. The value of activation energy E and the function of conversion f(α) are obtained independently, and thereby the determination of mechanism function is not affected by the value of E. The values of E decrease from 175.418 to 160.395 kJ mol−1 with the increase of the conversion degrees (α) from 0.1 to 0.8. However, as the conversion degrees approach 0.9, the value of E increases to 222.647 kJ mol−1, and the corresponding pre-exponential factor A is about three orders of magnitude larger than the previous ones.


1961 ◽  
Vol 38 (4) ◽  
pp. 545-562 ◽  
Author(s):  
L. Kecskés ◽  
F. Mutschler ◽  
I. Glós ◽  
E. Thán ◽  
I. Farkas ◽  
...  

ABSTRACT 1. An indirect paperchromatographic method is described for separating urinary oestrogens; this consists of the following steps: acidic hydrolysis, extraction with ether, dissociation of phenol-fractions with partition between the solvents. Previous purification of phenol fraction with the aid of paperchromatography. The elution of oestrogen containing fractions is followed by acetylation. Oestrogen acetate is isolated by re-chromatography. The chromatogram was developed after hydrolysis of the oestrogens 'in situ' on the paper. The quantity of oestrogens was determined indirectly, by means of an iron-reaction, after the elution of the iron content of the oestrogen spot, which was developed by the Jellinek-reaction. 2. The method described above is satisfactory for determining urinary oestrogen, 17β-oestradiol and oestriol, but could include 16-epioestriol and other oestrogenic metabolites. 3. The sensitivity of the method is 1.3–1.6 μg/24 hours. 4. The quantitative and qualitative determination of urinary oestrogens with the above mentioned method was performed in 50 pregnant and 9 non pregnant women, and also in 2 patients with granulosa cell tumour.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2020 ◽  
Author(s):  
Satoshi Morooka ◽  
Nobuo Nakada ◽  
Yuhki Tsukada ◽  
Wu Gong ◽  
Takuro Kawasaki ◽  
...  

2013 ◽  
Vol 10 (4) ◽  
pp. 498-504 ◽  
Author(s):  
Lorena Martiniano ◽  
Joseany Almeida ◽  
Glene Cavalcante ◽  
Edmar Marques ◽  
Teresa Fonseca ◽  
...  

Author(s):  
ZhengWang ◽  
Lifang Xue ◽  
Mingji Li ◽  
Cuiping Li ◽  
Penghai Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document