Sequential visual reaction times

1988 ◽  
Vol 8 (1) ◽  
pp. 63-66
Author(s):  
J.M. Artigas ◽  
A. Felipe ◽  
F.W. Campbell
Author(s):  
Drew McRacken ◽  
Maddie Dyson ◽  
Kevin Hu

Over the past few decades, there has been a significant number of reports that suggested that reaction times for different sensory modalities were different – e.g., that visual reaction time was slower than tactile reaction time. A recent report by Holden and colleagues stated that (1) there has been a significant historic upward drift in reaction times reported in the literature, (2) that this drift or degradation in reaction times could be accounted for by inaccuracies in the methods used and (3) that these inaccurate methods led to inaccurate reporting of differences between visual and tactile based reaction time testing.  The Holden study utilized robotics (i.e., no human factors) to test visual and tactile reaction time methods but did not assess how individuals would perform on different sensory modalities.  This study utilized three different sensory modalities: visual, auditory, and tactile, to test reaction time. By changing the way in which the subjects were prompted and measuring subsequent reaction time, the impact of sensory modality could be analyzed. Reaction time testing for two sensory modalities, auditory and visual, were administered through an Arduino Uno microcontroller device, while tactile-based reaction time testing was administered with the Brain Gauge. A range of stimulus intensities was delivered for the reaction times delivered by each sensory modality. The average reaction time and reaction time variability was assessed and a trend could be identified for the reaction time measurements of each of the sensory modalities. Switching the sensory modality did not result in a difference in reaction time and it was concluded that this was due to the implementation of accurate circuitry used to deliver each test. Increasing stimulus intensity for each sensory modality resulted in faster reaction times. The results of this study confirm the findings of Holden and colleagues and contradict the results reported in countless studies that conclude that (1) reaction times are historically slower now than they were 50 years ago and (2) that there are differences in reaction times for different sensory modalities (vision, hearing, tactile). The implications of this are that utilization of accurate reaction time methods could have a significant impact on clinical outcomes and that many methods in current clinical use are basically perpetuating poor methods and wasting time and money of countless subjects or patients.


2016 ◽  
Vol 15 (4) ◽  
pp. 596-600
Author(s):  
Varun Malhotra ◽  
Neera Goel ◽  
Usha Dhar ◽  
Rinku Garg ◽  
Yogish Tripathi

Background: Every activity requires a certain amount of concentration and no effective action may be performed without deep concentration. Businessman or artists or students in school must know the art of focusing all powers of attention on a single point in order to succeed in their respective vocation.Methods: We wanted to find the best technique to increase the concentration scientifically. We thus, endeavored to study and compare the reaction times in maneuvers of anuloma viloma pranayama, kapalbhatti pranayama, gayatri chanting and exercise. Reaction time test was taken online before anuloma viloma pranayama, kapalbhatti pranayama, gayatri chanting and exercise and compared after.Results: Reaction times decreased significantly and was least during gayatri mantra. Concentration as seen by a decrease in visual reaction time denotes first a withdrawal of attention from objects of distraction and then focusing all attention upon one thing at a time. Just 30 minutes of physical activity each day offers substantial benefits to your health.Conclusions: Pranayama or devotional music chanting also decreases fatigue keeps the mind alert, and active.Bangladesh Journal of Medical Science Vol.15(4) 2016 p.596-600


1968 ◽  
Vol 27 (2) ◽  
pp. 447-450 ◽  
Author(s):  
Walter A. Busby ◽  
Donald E. Hurd

To determine the relationship between reading achievement and the reaction time of an individual responding to auditory and visual stimuli present in his perceptual field Ss were selected at random from Grades 2, 4 and 6. S lifted his finger from a key as rapidly as possible at the onset of any one of four stimuli (red or green light, high or low tone). Shifting reaction time was not independent of reaction time in either the auditory or visual channel. Hence, the possibility that relative perceptual difficulties could exist in shifting behavior while no defect existed in either single channel was not supported. Perception defined as the reaction time of an individual responding to auditory and visual stimuli was not significantly related to reading achievement.


1979 ◽  
Vol 48 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Armand V. Cardello

An experiment was conducted to compare visual reaction time and visual brightness within the same subjects. Simple reaction times and magnitude estimates of brightness were obtained in response to 1000-msec. flashes of 60.7, 67.5, 76.4, 85.1, and 93.4 dB re 10−10L white light. The relationship between reaction time and stimulus intensity was best described by a negative logarithmic function, while the relationship between magnitude estimates of brightness and stimulus intensity was best described by a power function. Linear correlations between reaction times and magnitude estimates indicated that visual reaction time and brightness are not proportional within all subjects. Previous reports of proportionality between these two measures were discussed as possibly being the result of inappropriate cross-experiment comparisons.


Motor Control ◽  
1998 ◽  
Vol 2 (2) ◽  
pp. 114-124 ◽  
Author(s):  
Annette J. Raynor

The patellar tendon reflex (PTR) and simple visual reaction time (VRT) were fractionated and compared in 40 subjects with developmental coordination disorder (DCD) and normal coordination (NC) in two age groups. Four equal groups of subjects, 6 years DCD (6DCD), 6 years NC (6NC), 9 years DCD (9DCD), and 9 years NC (9NC) were compared using ANOVA for the main effects of coordination and age. PTR and its components of reflex latency and motor time were not significantly affected by the level of coordination; however, a significant coordination by age interaction (p< .05) revealed an increased motor time in the 6DCD group. VRT, premotor time, and motor time were all significantly (p< .05) increased in children with DCD; the increased VRT and premotor time support earlier findings, whereas the increased motor time has not previously been found. These findings suggest that the processing of reflexive and volitional responses by children with DCD differs from that of their NC peers.


2003 ◽  
Vol 46 (6) ◽  
pp. 1378-1386 ◽  
Author(s):  
Ann M. Rothpletz ◽  
Daniel H. Ashmead ◽  
Anne Marie Tharpe

The purpose of this study was to compare the response times of deaf and normal-hearing individuals to the onset of target events in the visual periphery in distracting and nondistracting conditions. Visual reaction times to peripheral targets placed at 3 eccentricities to the left and right of a center fixation point were measured in prelingually deafened adults and normal-hearing adults. Deaf participants responded more slowly than normal-hearing participants to targets in the near periphery in the nondistracting condition and to targets in the near and distant periphery when distracting stimuli were present. One interpretation of these findings is that deaf individuals may be more deliberate than normal-hearing individuals in responding to near peripheral events and to peripheral events that occur in the presence of distracting stimuli.


1973 ◽  
Vol 36 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Carl Spring ◽  
Lawrence Greenberg ◽  
Jimmy Scott ◽  
John Hopwood

In Exp. I, 22 poor readers and 22 normal readers of elementary-school age were matched on age, IQ, and sex and tested with a visual reaction-time task requiring same-different judgments. On initial trials poor readers were slower than normal readers. In addition, the performance of poor readers deteriorated faster than that of normal readers as testing progressed. In Exp. II, 20 hyperactive boys taking methylphenidate medication, 19 hyperactive boys whose medication was temporarily discontinued, and 19 normal boys were tested. Reaction time on early trials was not significantly different for boys in the on-medication and off-medication groups; however, both hyperactive groups were slower than the normal group. As testing progressed, reaction times of normal boys and boys taking medication remained fairly stable, while the performance of hyperactive boys not taking medication declined. The significance of these results to reading and spelling is discussed.


1998 ◽  
Vol 19 (3) ◽  
pp. 161-170 ◽  
Author(s):  
R. Barbarotto ◽  
M. Laiacona ◽  
R. Frosio ◽  
M. Vecchio ◽  
A. Farinato ◽  
...  

2001 ◽  
Vol 15 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Luis García-Larrea ◽  
Caroline Perchet ◽  
Fabien Perrin ◽  
Elena Amenedo

The use of mobile phones has been shown to increase drivers' reaction times (RTs), but whether this results from interference with attention, stimulus identification, or response production remains unclear. We recorded RTs and event-related brain potentials (ERPs) reflecting speed of stimulus processing, attentional allocation, and preparedness to respond during a visual reaction task performed with or without the concomitant use of a mobile phone, in either “hands-free” or “phone-in-hand” operating modes. As expected, maintaining a phone conversation increased RTs to visual targets, this effect being associated with complex ERP effects. Phone conversations did not appear to delay target detection times, as assessed by N2-P3 latencies, but did significantly decrease stimulus-induced alerting and attentional allocation (P3 amplitude) and interfered with motor preparation processes (readiness potential). P3 amplitude drop was identical whatever the mode of phone use, while decrease of readiness potential was progressive from the “hands-free” to the “phone-in-hand” condition. These results suggest that two mechanisms contributed to degrade performance in this experiment: first, a general decrease of attention to sensory inputs, characteristic of “dual-task” situations, probably acting through a delay in sensory-motor transfer times. This effect was independent of whether the phone was handled or “hands-free.” Conversely, the second factor was specifically sensitive to manipulation of the phone and caused a weakening of the readiness to respond with a motor act.


Sign in / Sign up

Export Citation Format

Share Document