The Paradoxes of Racism

1993 ◽  
Vol 28 (4) ◽  
pp. 512-525 ◽  
Author(s):  
John Dunn

IN ITS MOST ELABORATELY ARTICULATED FORM RACISM IS AN array of theoretical views about the epistemic clarity and human import of the practice of individuating human populations in terms of their presumed biological descent. In this form the term can refer with some precision, and largely independently of context, to a quite specific body of beliefs. In far more diffuse and far less theoretical forms, however, and in forms which are also far more widely distributed in human history, it can and does refer just as readily to the highlighting of distinctions which are certainly at least as much cultural as they are genetic, and which are inextricably located in a context of more or less intimate and painful confrontation between human groups. In this second form there cannot in principle be anything comparably determinate for the term racism to refer to.

2016 ◽  
Vol 113 (48) ◽  
pp. E7681-E7690 ◽  
Author(s):  
Fernando Colchero ◽  
Roland Rau ◽  
Owen R. Jones ◽  
Julia A. Barthold ◽  
Dalia A. Conde ◽  
...  

The human lifespan has traversed a long evolutionary and historical path, from short-lived primate ancestors to contemporary Japan, Sweden, and other longevity frontrunners. Analyzing this trajectory is crucial for understanding biological and sociocultural processes that determine the span of life. Here we reveal a fundamental regularity. Two straight lines describe the joint rise of life expectancy and lifespan equality: one for primates and the second one over the full range of human experience from average lifespans as low as 2 y during mortality crises to more than 87 y for Japanese women today. Across the primate order and across human populations, the lives of females tend to be longer and less variable than the lives of males, suggesting deep evolutionary roots to the male disadvantage. Our findings cast fresh light on primate evolution and human history, opening directions for research on inequality, sociality, and aging.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1079
Author(s):  
Andres Escobar ◽  
Phyllis Chiu ◽  
Jianxi Qu ◽  
Yushan Zhang ◽  
Chang-qing Xu

The rapid detection and quantification of infectious pathogens is an essential component to the control of potentially lethal outbreaks among human populations worldwide. Several of these highly infectious pathogens, such as Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been cemented in human history as causing epidemics or pandemics due to their lethality and contagiousness. SARS-CoV-2 is an example of these highly infectious pathogens that have recently become one of the leading causes of globally reported deaths, creating one of the worst economic downturns and health crises in the last century. As a result, the necessity for highly accurate and increasingly rapid on-site diagnostic platforms for highly infectious pathogens, such as SARS-CoV-2, has grown dramatically over the last two years. Current conventional non-microfluidic diagnostic techniques have limitations in their effectiveness as on-site devices due to their large turnaround times, operational costs and the need for laboratory equipment. In this review, we first present criteria, both novel and previously determined, as a foundation for the development of effective and viable on-site microfluidic diagnostic platforms for several notable pathogens, including SARS-CoV-2. This list of criteria includes standards that were set out by the WHO, as well as our own “seven pillars” for effective microfluidic integration. We then evaluate the use of microfluidic integration to improve upon currently, and previously, existing platforms for the detection of infectious pathogens. Finally, we discuss a stage-wise means to translate our findings into a fundamental framework towards the development of more effective on-site SARS-CoV-2 microfluidic-integrated platforms that may facilitate future pandemic diagnostic and research endeavors. Through microfluidic integration, many limitations in currently existing infectious pathogen diagnostic platforms can be eliminated or improved upon.


Author(s):  
Ricard Solé ◽  
Santiago F. Elena

It has been argued that epidemics have played a major role in human history. For example, the arrival of the British in Australia triggered a deadly wave of smallpox infections, with the estimated death of half of the indigenous Australians. The same virus wiped out the population of Easter Island, and measles eliminated a third of the inhabitants of Fiji. New threats have also emerged as human populations explode and pressure on ecosystems crosses sustainability thresholds. In order to understand how to deal with epidemics and eradicate them, there is a need to first understand how they spread. This chapter begins with a discussion of epidemic modeling, specifically the SIS model. It then covers the SIS model in space and graphs, modeling HIV-1 transmission, and halting viruses in scale-free networks.


2018 ◽  
Author(s):  
Aaron P. Ragsdale ◽  
Simon Gravel

AbstractWe learn about population history and underlying evolutionary biology through patterns of genetic polymorphism. Many approaches to reconstruct evolutionary histories focus on a limited number of informative statistics describing distributions of allele frequencies or patterns of linkage disequilibrium. We show that many commonly used statistics are part of a broad family of two-locus moments whose expectation can be computed jointly and rapidly under a wide range of scenarios, including complex multi-population demographies with continuous migration and admixture events. A full inspection of these statistics reveals that widely used models of human history fail to predict simple patterns of linkage disequilibrium. To jointly capture the information contained in classical and novel statistics, we implemented a tractable likelihood-based inference framework for demographic history. Using this approach, we show that human evolutionary models that include archaic admixture in Africa, Asia, and Europe provide a much better description of patterns of genetic diversity across the human genome. We estimate that an unidentified, deeply diverged population admixed with modern humans within Africa both before and after the split of African and Eurasian populations, contributing 4-8% genetic ancestry to individuals in world-wide populations.Author SummaryThroughout human history, populations have expanded and contracted, split and merged, and ex-changed migrants. Because these events affected genetic diversity, we can learn about human history by comparing predictions from evolutionary models to genetic data. Here, we show how to rapidly compute such predictions for a wide range of diversity measures within and across populations under complex demographic scenarios. While widely used models of human history accurately predict common measures of diversity, we show that they strongly underestimate the co-occurence of low frequency mutations within human populations in Asia, Europe, and Africa. Models allowing for archaic admixture, the relatively recent mixing of human populations with deeply diverged human lineages, resolve this discrepancy. We use such models to infer demographic models that include both recent and ancient features of human history. We recover the well-characterized admixture of Neanderthals in Eurasian populations, as well as admixture from an as-yet unknown diverged human population within Africa, further suggesting that admixture with deeply diverged lineages occurred multiple times in human history. By simultaneously testing model predictions for a broad range of diversity statistics, we can assess the robustness of common evolutionary models, identify missing historical events, and build more informed models of human demography.


2003 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Harry F. Recher

ALL of us are aware of the changes to our lives and surroundings brought by growing numbers of people and by new and improved technologies. Many of these changes have brought opportunities undreamed of by past generations; for many of us our lives are healthier and longer than at any time in human history and we share unimaginable wealth and prosperity. Unfortunately not everyone shares in these benefits. The growth of human populations, the exploitation of resources, and new technologies have contributed to a growing gap between rich and poor. Pollution and environmental degradation affect all people and all parts of the planet. Wilderness and nature have retreated before the expansion of the human enterprise.


2018 ◽  
Author(s):  
Tal Shor ◽  
Dan Geiger ◽  
Yaniv Erlich ◽  
Omer Weissbrod

AbstractThe rapid digitization of genealogical and medical records enables the assembly of extremely large pedigree records spanning millions of individuals and trillions of pairs of relatives. Such pedigrees provide the opportunity to investigate the sociological and epidemiological history of human populations in scales much larger than previously possible. Linear mixed models (LMMs) are routinely used to analyze extremely large animal and plant pedigrees for the purposes of selective breeding. However, LMMs have not been previously applied to analyze population-scale human family trees. Here, we present Sparse Cholesky factorIzation LMM (Sci-LMM), a modeling framework for studying population-scale family trees that combines techniques from the animal and plant breeding literature and from human genetics literature. The proposed framework can construct a matrix of relationships between trillions of pairs of individuals and fit the corresponding LMM in several hours. We demonstrate the capabilities of Sci-LMM via simulation studies and by estimating the heritability of longevity and of reproductive fitness (quantified via number of children) in a large pedigree spanning millions of individuals and over five centuries of human history. Sci-LMM provides a unified framework for investigating the epidemiological history of human populations via genealogical records.Author SummaryThe advent of online genealogy services allows the assembly of population-scale family trees, spanning millions of individuals and centuries of human history. Such datasets enable answering genetic epidemiology questions on unprecedented scales. Here we present Sci-LMM, a pedigree analysis framework that combines techniques from animal and plant breeding research and from human genetics research for large-scale pedigree analysis. We apply Sci-LMM to analyze population-scale human genealogical records, spanning trillions of relationships. We have made both Sci-LMM and an anonymized dataset of millions of individuals freely available to download, making the analysis of population-scale human family trees widely accessible to the research community. Together, these resources allow researchers to investigate genetic and epidemiological questions on an unprecedented scale.


2020 ◽  
Vol 43 ◽  
Author(s):  
Andrea Bender

Abstract Tomasello argues in the target article that, in generalizing the concrete obligations originating from interdependent collaboration to one's entire cultural group, humans become “ultra-cooperators.” But are all human populations cooperative in similar ways? Based on cross-cultural studies and my own fieldwork in Polynesia, I argue that cooperation varies along several dimensions, and that the underlying sense of obligation is culturally modulated.


Crisis ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Christopher M. Bloom ◽  
Shareen Holly ◽  
Adam M. P. Miller

Background: Historically, the field of self-injury has distinguished between the behaviors exhibited among individuals with a developmental disability (self-injurious behaviors; SIB) and those present within a normative population (nonsuicidal self-injury; NSSI),which typically result as a response to perceived stress. More recently, however, conclusions about NSSI have been drawn from lines of animal research aimed at examining the neurobiological mechanisms of SIB. Despite some functional similarity between SIB and NSSI, no empirical investigation has provided precedent for the application of SIB-targeted animal research as justification for pharmacological interventions in populations demonstrating NSSI. Aims: The present study examined this question directly, by simulating an animal model of SIB in rodents injected with pemoline and systematically manipulating stress conditions in order to monitor rates of self-injury. Methods: Sham controls and experimental animals injected with pemoline (200 mg/kg) were assigned to either a low stress (discriminated positive reinforcement) or high stress (discriminated avoidance) group and compared on the dependent measures of self-inflicted injury prevalence and severity. Results: The manipulation of stress conditions did not impact the rate of self-injury demonstrated by the rats. The results do not support a model of stress-induced SIB in rodents. Conclusions: Current findings provide evidence for caution in the development of pharmacotherapies of NSSI in human populations based on CNS stimulant models. Theoretical implications are discussed with respect to antecedent factors such as preinjury arousal level and environmental stress.


Sign in / Sign up

Export Citation Format

Share Document