A 350,000-year climatic record from the loess sequence of Achenheim, Alsace, France

Boreas ◽  
2008 ◽  
Vol 19 (3) ◽  
pp. 203-216 ◽  
Author(s):  
DENIS-DIDIER ROUSSEAU ◽  
JEAN-JACQUES PUISSÉGUR
Keyword(s):  
1988 ◽  
Vol 10 ◽  
pp. 178-182 ◽  
Author(s):  
Lonnie G. Thompson ◽  
Wu Xiaoling ◽  
Ellen Mosley-Thompson ◽  
Xie Zichu

Results from the first glaciological investigation of the Dunde ice cap demonstrate that a long, highly temporally resolvable climatic ice-core record is preserved in this ice cap. Measurements of stratigraphy, microparticle concentrations, liquid conductivity, and oxygen-isotope ratios from three snow pits in 1984 suggest that the annual accumulation is approximately 200 mm (water equivalent). Measurement of microparticle concentrations and conductivities of pit samples collected in 1986 confirm the existence of annual dust layers and an annual accumulation rate of ∼200 mm/year over the past 5 years. Bore-hole temperatures of –5.4°C at 30 m indicate that the ice cap is polar. Mono-pulse radar depth determinations yield an average thickness of 140 m, which (coupled with the smooth bedrock topography and the current accumulation rate) suggest that the Dunde ice cap should contain at least a 3000 year climatic record. A drilling program to recover that record from this subtropical location is planned for 1987.


1964 ◽  
Vol 5 (37) ◽  
pp. 77-86 ◽  
Author(s):  
Calvin J. Heusser ◽  
Melvin G. Marcus

AbstractLemon Creek Glacier served as the focus of attention of the Juneau Ice Field Research Project from 1953 through 1958, during which period glaciological and related research was accomplished. This paper provides an historical framework for those studies by (1) considering variations of Lemon Creek Glacier in recent centuries and during millennia since the last ice age, and (2) describing certain relationships which appear to exist between these variations and the climatic record.It is found that Lemon Creek Glacier has been receding intermittently since a maximumc. 1750 and by 1958 had lostc. 25 per cent of the former area. Most rapid recession occurred during the periods 1891–1902 and 1929–58. Behaviour of the glacier sincec. 1750 reveals a parallelism with glaciers in most of the regions where temperature trends have been graphed as well as with other glaciers of the Juneau Ice Field. The advances of the 1950’s observed in the Rocky, Cascade and Olympic Mountains do not, however, show up in the Juneau area. Lemon Creek Glacier has not advanced more than 375 m. beyond the 1750 position, if at all, during the last 10,000 yr.


1982 ◽  
Vol 3 ◽  
pp. 17-22 ◽  
Author(s):  
J. P. Benoist ◽  
J. Jouzel ◽  
C. Lorius ◽  
L. Merlivat ◽  
M. Pourchet

Data on climatic changes over thousands of years is needed for a better understanding of the shorter term variations which are of interest to man. For this purpose we measured the isotope composition (δD‰) of two adjacent ice cores drilled in the Dome C area. The time scale was established using the remarkably constant mean annual accumulation rate (37 kg m−2) determined by various techniques. The detailed isotope records were smoothed to filter out the δ value fluctuations not directly related to local temperature changes. With respect to conditions over the last 2.5 ka, the combined smoothed δ curve indicates a cooler climate from about 1800 to 1200 AD and a slightly warmer period from about 1200 to 700 AD. These periods may well correspond to the suggested world-wide Little Ice Age and medieval warm phase. Using the present δD‰/T°C measured at the surface, the maximum amplitude for these two periods, after smoothing with a low pass filter of 512 a, is approximately -0.35 and +0.3°C, respectively.


2006 ◽  
Vol 26 (8) ◽  
pp. 1091-1124 ◽  
Author(s):  
Rezaul Mahmood ◽  
Stuart A. Foster ◽  
David Logan

2009 ◽  
Vol 19 (3) ◽  
pp. 274-282 ◽  
Author(s):  
Jibin Xue ◽  
Wei Zhong ◽  
Yanming Zheng ◽  
Qiaohong Ma ◽  
Ying Cai ◽  
...  

Author(s):  
Sharon E. Nicholson

Environmental constraints have large impacts on populations, especially in semi-arid regions such as Africa. Climate and weather have long affected African societies, but unfortunately the traditional climatic record for the continent is relatively short. For that reason, historical information has often been used to reconstruct climate of the past. Sources of historical information include reports and diaries of explorers, settlers, and missionaries; government records; reports of scientific expeditions; and historical geographical and meteorological journals. Local oral tradition is also useful. It is reported in the form of historical chronicles compiled centuries later. References to famine and drought, economic conditions, floods, agriculture, weather events, and the season cycle are examples of useful types of information. Some of the records also include meteorological measurements. More recently chemical and biological information, generally derived from lake cores, has been applied to historical climate reconstruction. Early works provided in most cases qualitative, discontinuous information, such as drought chronologies. However, a statistical method of climate reconstruction applied to a vast collection of historical information and meteorological data allowed for the creation of a two-century, semi-quantitative “precipitation” data set. It consists of annual indices related to rainfall since 1800 for ninety regions of the African continent. This data set has served to illustrate several 19th-century periods of anomalous rainfall conditions that affected nearly the entire continent. An example is widespread aridity during several decades early in that century.


1990 ◽  
Vol 14 ◽  
pp. 323-327 ◽  
Author(s):  
T.D. Yao ◽  
J.R. Petit ◽  
J. Jouzel ◽  
C. Lorius ◽  
P. Duval

Deuterium content, microparticle concentration, ice crystal size and bubble concentration have been studied along an 82 m ice core drilled down to the bedrock in the ice-sheet margin in East Antarctica. The Last Glacial Maximum (LGM) is distinctly marked by low deuterium content, high concentration of microparticles, small ice crystals and high bubble concentrations. This core covers a significant part of the Last Glacial Period with ice from a warmer period recovered around a depth of 60 m.


Sign in / Sign up

Export Citation Format

Share Document