Relative Contribution of Inbreeding Depression and Eroded Adaptive Diversity to Extinction Risk in Small Populations of Shore Campion

2005 ◽  
Vol 20 (1) ◽  
pp. 229-238 ◽  
Author(s):  
CARLOS VILAS ◽  
EDUARDO SAN MIGUEL ◽  
RAFAELA AMARO ◽  
CARLOS GARCIA
2016 ◽  
Author(s):  
Meike J. Wittmann ◽  
Hanna Stuis ◽  
Dirk Metzler

SummaryIt is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called “strong Allee effects” and they can arise for example from mate limitation in small populations.In this study, we aim to a) develop a meaningful notion of a “strong genetic Allee effect”, b) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and c) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect.We define a strong genetic Allee effect as a genetic process that causes a population’s survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyze simple stochastic models for the ecology and genetics of small populations.Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents) on average and if these mutations are spread across sufficiently many loci. Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in, and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible.Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations.


2019 ◽  
Author(s):  
Christopher C. Kyriazis ◽  
Robert K. Wayne ◽  
Kirk E. Lohmueller

AbstractHuman-driven habitat fragmentation and loss have led to a proliferation of small and isolated plant and animal populations with high risk of extinction. One of the main threats to extinction in these populations is inbreeding depression, which is primarily caused by the exposure of recessive deleterious mutations as homozygous by inbreeding. The typical approach for managing these populations is to maintain high genetic diversity, often by translocating individuals from large populations to initiate a ‘genetic rescue.’ However, the limitations of this approach have recently been highlighted by the demise of the gray wolf population on Isle Royale, which was driven to the brink of extinction soon after the arrival of a migrant from the large mainland wolf population. Here, we use a novel population genetic simulation framework to investigate the role of genetic diversity, deleterious variation, and demographic history in mediating extinction risk due to inbreeding depression in small populations. We show that, under realistic models of dominance, large populations harbor high levels of recessive strongly deleterious variation due to these mutations being hidden from selection in the heterozygous state. As a result, when large populations contract, they experience a substantially elevated risk of extinction after these strongly deleterious mutations are exposed by inbreeding. Moreover, we demonstrate that although translocating individuals to small populations is broadly effective as a means to reduce extinction risk, using small or moderate-sized source populations rather than large source populations can greatly increase the effectiveness of genetic rescue due to greater purging in these smaller populations. Our findings challenge the traditional conservation paradigm that focuses on maximizing genetic diversity to reduce extinction risk in favor of a view that emphasizes minimizing strongly deleterious variation. These insights have important implications for managing small and isolated populations in the increasingly fragmented landscape of the Anthropocene.Impact SummaryNumerous threats to extinction exist for small populations, including the detrimental effects of inbreeding. Although much of the focus in reducing these harmful effects in small populations has been on maintaining high genetic diversity, here we use simulations to demonstrate that emphasis should instead be placed on minimizing strongly deleterious variation. More specifically, we show that historically-large populations with high levels of genetic diversity also harbor elevated levels of recessive strongly deleterious mutations hidden in the heterozygous state. Thus, when these populations contract, inbreeding can expose these strongly deleterious mutations as homozygous and lead to severe inbreeding depression and rapid extinction. Moreover, we demonstrate that, although translocating individuals to these small populations to perform a ‘genetic rescue’ is broadly beneficial, the effectiveness of this strategy can be greatly increased by targeting historically-smaller source populations where recessive strongly deleterious mutations have been purged. These results challenge long-standing views on how to best conserve small and isolated populations facing the threat of inbreeding depression, and have immediate implications for preserving biodiversity in the increasingly fragmented landscape of the Anthropocene.


2019 ◽  
Vol 60 (1) ◽  
Author(s):  
Shi-Quan Wang

Abstract Background Small populations are predominantly vulnerable to inbreeding and inbreeding depression (ID). Owing to increased levels of inbreeding on individuals in small populations, ID could decrease the population growth rate, as well as its effective size, and exacerbate the extinction risk. Inbreeding depression remains a crucial area of research in conservation biology, ecology, and evolutionary biology. This study aims to elucidate the reproductive biology, inbreeding, and ID of Paeonia decomposita and to conserve, manage, and improve them better in the future. Results Paeonia decomposita belongs to a xenogamous category and is partially self-compatible; moreover, it requires pollinators for seed production. Lately, the occurrence of pollination and pollinator limitations has affected the seed set. Low seed set primarily correlated with an abnormality of meiosis in the pollen mother cell, moderate to low genetic diversity, drought and extreme weather, pollinator limitation, or carpel space limit. One of the primary reasons for endangered mechanism in P. decomposita is the low seed set under natural conditions. The cumulative value of ID was positive, and outcrossed progeny outperformed selfed progeny. Conclusions Paeonia decomposita requires pollinators to ensure seed production either through autogamy, geitonogamy, or allogamy. It is both allogamous and partially self-compatible, as well as a successful outcrosser. Inbreeding occurs frequently and results in ID, which imposes a potential threat to the survival of populations. Besides, it needs conservation via in situ and natural return methods.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

The harmful impacts of inbreeding are generally greater in species that naturally outbreed compared to those in inbreeding species, greater in stressful than benign environments, greater for fitness than peripheral traits, and greater for total fitness compared to its individual components. Inbreeding reduces survival and reproduction (i.e., it causes inbreeding depression), and thereby increases the risk of extinction. Inbreeding depression is due to increased homozygosity for harmful alleles and at loci exhibiting heterozygote advantage. Natural selection may remove (purge) the alleles that cause inbreeding depression, especially following inbreeding or population bottlenecks, but it has limited effects in small populations and usually does not completely eliminate inbreeding depression. Inbreeding depression is nearly universal in sexually reproducing organisms that are diploid or have higher ploidies.


2018 ◽  
Author(s):  
Russell Dinnage ◽  
Alex Skeels ◽  
Marcel Cardillo

AbstractComparative models used to predict species threat status often combine variables measured at the species level with spatial variables, causing multiple statistical challenges, including phylogenetic and spatial non-independence. We present a novel bayesian approach for modelling threat status that simultaneously deals with both forms of non-independence and estimates their relative contribution, and we apply the approach to modelling threat status in the Australian plant genus Hakea. We find that after phylogenetic and spatial effects are accounted for, species with greater evolutionary distinctiveness and a shorter annual flowering period are more likely to be threatened. The model allows us to combine information on evolutionary history, species biology, and spatial data, to calculate latent extinction risk (potential for non-threatened species to become threatened), and estimate the most important drivers of risk for individual species. This could be of value for proactive conservation decision-making that targets species of concern before they become threatened.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Inbreeding reduces survival and reproduction (i.e. it causes inbreeding depression), and thereby increases extinction risk. Inbreeding depression is due to increased homozygosity for harmful alleles and at loci exhibiting heterozygote advantage. Inbreeding depression is nearly universal in sexually reproducing organisms that are diploid or have higher ploidies. Impacts of inbreeding are generally greater in species that naturally outbreed than those that inbreed, in stressful than benign environments, and for fitness than peripheral traits. Harmful effects accumulate across the life cycle, resulting in devastating effects on total fitness in outbreeding species.Species face ubiquitous environmental change and must adapt or they will go extinct. Genetic diversity is the raw material required for evolutionary adaptation. However, loss of genetic diversity is unavoidable in small isolated populations, diminishing their capacity to evolve in response to environmental changes, and thereby increasing extinction risk.


Author(s):  
Donald M. Waller ◽  
Lukas F. Keller

Inbreeding (also referred to as “consanguinity”) occurs when mates are related to each other due to incest, assortative mating, small population size, or population sub-structuring. Inbreeding results in an excess of homozygotes and hence a deficiency of heterozygotes. This, in turn, exposes recessive genetic variation otherwise hidden by heterozygosity with dominant alleles relative to random mating. Interest in inbreeding arose from its use in animal and plant breeding programs to expose such variation and to fix variants in genetically homogenous lines. Starting with Gregor Mendel’s experiments with peas, geneticists have widely exploited inbreeding as a research tool, leading R. C. Lewontin to conclude that “Every discovery in classical and population genetics has depended on some sort of inbreeding experiment” (see Lewontin’s 1965 article “The Theory of Inbreeding.” Science 150:1800–1801). Charles Darwin wrote an entire book on the effects of inbreeding as measured in fifty-two taxa of plants. He and others noted that most plants and animals go to great length to avoid inbreeding, suggesting that inbreeding has high costs that often outweigh the benefits of inbreeding. Benefits of inbreeding include increased genetic transmission while the costs of inbreeding manifest as inbreeding depression when deleterious, mostly recessive alleles otherwise hidden as heterozygotes emerge in homozygote form upon inbreeding. Inbreeding also reduces fitness when heterozygotes are more fit than both homozygotes, but such overdominance is rare. Recurrent mutation continuously generates deleterious recessive alleles that create a genetic “load” of deleterious mutations mostly hidden within heterozygotes in outcrossing populations. Upon inbreeding, the load is expressed when deleterious alleles segregate as homozygotes, causing often substantial inbreeding depression. Although inbreeding alone does not change allele frequencies, it does redistribute genetic variation, reducing it within families or populations while increasing it among families or populations. Inbreeding also increases selection by exposing deleterious recessive mutations, a process called purging that can deplete genetic variation. For all these reasons, inbreeding is a central concept in evolutionary biology. Inbreeding is also central to conservation biology as small and isolated populations become prone to inbreeding and thus suffer inbreeding depression. Inbreeding can reduce population viability and increase extinction risk by reducing individual survival and/or reproduction. Such effects can often be reversed, however, by introducing new genetic material that re-establishes heterozygosity (“genetic rescue”). The current availability of DNA sequence and expression data is now allowing more detailed analyses of the causes and evolutionary consequences of inbreeding.


Evolution ◽  
2016 ◽  
Vol 71 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Rachel B. Spigler ◽  
Konstantinos Theodorou ◽  
Shu-Mei Chang

2021 ◽  
Author(s):  
◽  
Helen R. Taylor

<p>Population bottlenecks reduce genetic variation and population size. Small populations are at greater risk of inbreeding, which further erodes genetic diversity and can lead to inbreeding depression. Inbreeding depression is known to increase extinction risk. Thus, detecting inbreeding depression is important for population viability assessment and conservation management. However, identifying inbreeding depression in wild populations is challenging due to the difficulty of obtaining long-term measures of fitness and error-free measures of individual inbreeding coefficients. I investigated inbreeding depression and our power to detect it in species that have very low genetic variation, using little spotted kiwi (Apteryx owenii) (LSK) as a case study. This endemic New Zealand ratite experienced a bottleneck of, at most, five individuals ~100 years ago and has since been subjected to secondary bottlenecks as a result of introductions to new predator-free locations. There is no behavioural pedigree data available for any LSK population and the status of the species is monitored almost exclusively via population growth. I conducted two seasons of field work to determine hatching success in the two LSK populations with the highest and lowest numbers of founders; Zealandia Sanctuary (40 founders) and Long Island (two founders). I also used simulation-based modelling to assess the feasibility of reconstructing pedigrees based on individual genotypes from LSK populations to calculate pedigree inbreeding coefficients. Finally, I used microsatellite genotypes to measure the genetic erosion in successive filial groupings of Long Island and Zealandia LSK as a result of their respective bottlenecks, and tested for inbreeding depression on Long Island. Hatching success was significantly lower on Long Island than in Zealandia in both years of the study despite significantly higher reproductive effort on Long Island. Although this was suggestive of inbreeding depression on Long Island, simulation results showed that constructing a pedigree for any LSK population based on the genetic markers and samples currently available would lead to inaccurate pedigrees and invalid estimates of individual inbreeding coefficients. Thus, an alternative method of detecting inbreeding and inbreeding depression was required. Microsatellite data showed continued loss of heterozygosity in both populations, but loss of allelic diversity on Long Island only. Individual genotypes indicated that the majority (74%) of the adult Long Island population is comprised of the founding pair (F) and their direct offspring (F1) rather than birds from subsequent generations (F2+). This is not what would be expected if survival was equal between these two filial classes. I suggest that the high levels of inbreeding (≥0.25) in F2+ birds is impacting on their survival, creating a demographic skew in the population and resulting in lower hatching success on average on Long Island when compared to the relatively outbred Zealandia birds. This inbreeding depression appears to have been masked, thus far, by positive population growth on Long Island resulting from the long life span of LSK (27-83 years) and continued reproductive success of the founding pair. Thus, it is likely that the Long Island population will go into decline when the founding pair cease to reproduce. This study highlights the challenges of measuring inbreeding depression in species with very low genetic variation and the importance of assessing the statistical power and reliability of the genetic tools available for those species. It also demonstrates that basic genetic techniques can offer valuable insight when more advanced tools prove error-prone. Monitoring vital rates such as hatching success in conjunction with genetic data is important for assessing the success of conservation translocations and detecting potentially cryptic genetic threats such as inbreeding depression. My results suggest that LSK are being affected by inbreeding depression and that careful genetic management will be required to ensure the long-term viability of this species.</p>


Sign in / Sign up

Export Citation Format

Share Document