scholarly journals Spatiophylogenetic modelling of extinction risk reveals evolutionary distinctiveness and brief flowering period as risk factors in a diverse hotspot plant genus

2018 ◽  
Author(s):  
Russell Dinnage ◽  
Alex Skeels ◽  
Marcel Cardillo

AbstractComparative models used to predict species threat status often combine variables measured at the species level with spatial variables, causing multiple statistical challenges, including phylogenetic and spatial non-independence. We present a novel bayesian approach for modelling threat status that simultaneously deals with both forms of non-independence and estimates their relative contribution, and we apply the approach to modelling threat status in the Australian plant genus Hakea. We find that after phylogenetic and spatial effects are accounted for, species with greater evolutionary distinctiveness and a shorter annual flowering period are more likely to be threatened. The model allows us to combine information on evolutionary history, species biology, and spatial data, to calculate latent extinction risk (potential for non-threatened species to become threatened), and estimate the most important drivers of risk for individual species. This could be of value for proactive conservation decision-making that targets species of concern before they become threatened.

2020 ◽  
Vol 287 (1926) ◽  
pp. 20192817
Author(s):  
Russell Dinnage ◽  
Alexander Skeels ◽  
Marcel Cardillo

Comparative models used to predict species threat status can help identify the diagnostic features of species at risk. Such models often combine variables measured at the species level with spatial variables, causing multiple statistical challenges, including phylogenetic and spatial non-independence. We present a novel Bayesian approach for modelling threat status that simultaneously deals with both forms of non-independence and estimates their relative contribution, and we apply the approach to modelling threat status in the Australian plant genus Hakea. We find that after phylogenetic and spatial effects are accounted for, species with greater evolutionary distinctiveness and a shorter annual flowering period are more likely to be threatened. The model allows us to combine information on evolutionary history, species biology and spatial data, calculate latent extinction risk (potential for non-threatened species to become threatened), estimate the most important drivers of risk for individual species and map spatial patterns in the effects of different predictors on extinction risk. This could be of value for proactive conservation decision-making based on the early identification of species and regions of potential conservation concern.


2020 ◽  
Author(s):  
Harith Farooq ◽  
Josue Anderson ◽  
Francesco Belluardo ◽  
Cristovao Nanvonamuquitxo ◽  
Dominic Bennett ◽  
...  

ABSTRACTAimIn order to implement effective conservation policies, it is crucial to know how biodiversity is distributed and one of the most widely used systems is the Key Biodiversity Areas (hereafter KBA) criteria, developed by the International Union for Conservation of Nature (IUCN). Here we develop a tool to rank Key Biodiversity Areas in a continuous scale to allow the ranking between KBAs and test this tool on a simulated dataset of 10 000 scenarios of species compositions of reptiles and mammals in eight locations in Mozambique.LocationMozambique, AfricaMethodsWe compare the KBA criteria with four priorisation metrics (weighted endemism, extinction risk, evolutionary distinctiveness and EDGE score) to rank the biodiversity importance of eight sites with a randomly generated species composition of reptiles and mammals in Mozambique.ResultsWe find that none of these metrics is able to provide a suitable ranking of the sites surveyed that would ultimately allow prioritization. We therefore develop and validate the “WEGE index” (Weighted Endemism including Global Endangerment index), which is an adaptation of the EDGE score (Evolutionarily Distinct and Globally Endangered) and allows the ranking of sites according to the KBA criteria but on a continuous scale.Main conclusionsFor our study system, the WEGE index scores areas that trigger KBA status higher and is able to rank their importance in terms of biodiversity by using the range and threat status of species present at the site. Prioritization may be crucial for policy making and real-life conservation, allowing the choice between otherwise equally qualified sites according to the KBA categories. WEGE is intended to support a transparent decision-making process in conservation.


2019 ◽  
Author(s):  
Timothy J. Colston ◽  
Pallavi Kulkarni ◽  
Walter Jetz ◽  
R. Alexander Pyron

AbstractThe origin of turtles and crocodiles and their easily recognized body forms dates to the Triassic. Despite their long-term success, extant species diversity is low, and endangerment is extremely high compared to other terrestrial vertebrate groups, with ~ 65% of ~25 crocodilian and ~360 turtle species now threatened by exploitation and habitat loss. Here, we combine available molecular and morphological evidence with machine learning algorithms to present a phylogenetically-informed, comprehensive assessment of diversification, threat status, and evolutionary distinctiveness of all extant species. In contrast to other terrestrial vertebrates and their own diversity in the fossil record, extant turtles and crocodilians have not experienced any mass extinctions or shifts in diversification rate, or any significant jumps in rates of body-size evolution over time. We predict threat for 114 as-yet unassessed or data-deficient species and identify a concentration of threatened crocodile and turtle species in South and Southeast Asia, western Africa, and the eastern Amazon. We find that unlike other terrestrial vertebrate groups, extinction risk increases with evolutionary distinctiveness: a disproportionate amount of phylogenetic diversity is concentrated in evolutionarily isolated, at-risk taxa, particularly those with small geographic ranges. Our findings highlight the important role of geographic determinants of extinction risk, particularly those resulting from anthropogenic habitat-disturbance, which affect species across body sizes and ecologies.


Author(s):  
Tobias Andermann ◽  
Søren Faurby ◽  
Robert Cooke ◽  
Daniele Silvestro ◽  
Alexandre Antonelli

AbstractThe ongoing environmental crisis poses an urgent need to forecast the who, where, and when of future species extinctions, as such information is crucial for targeting conservation efforts. Commonly, such forecasts are made based on conservation status assessments produced by the International Union for Conservation of Nature (IUCN). However, when researchers apply these IUCN conservation status data for predicting future extinctions, important information is often omitted, which can impact the accuracy of these predictions.Here we present a new approach and a software for simulating future extinctions based on IUCN conservation status information, which incorporates generation length information of individual species when modeling extinction risks. Additionally, we explicitly model future changes in conservation status for each species, based on status transition rates that we estimate from the IUCN assessment history of the last decades. Finally, we apply a Markov chain Monte Carlo algorithm to estimate extinction rates for each species, based on the simulated future extinctions. These estimates inherently incorporate the chances of conservation status changes and the generation length for each given species and are specific to the simulated time frame.We demonstrate the utility of our approach by estimating extinction rates for all bird species. Our average extinction risk estimate for the next 100 years across all birds is 6.98 × 10−4 extinctions per species-year, and we predict an expected biodiversity loss of between 669 to 738 bird species within that time frame. Further, the rate estimates between species sharing the same IUCN status show larger variation than the rates estimated with alternative approaches, which reflects expected differences in extinction risk among taxa of the same conservation status. Our method demonstrates the utility of applying species-specific information to the estimation of extinction rates, rather than assuming equal extinction risks for species assigned to the same conservation status.


2016 ◽  
Vol 12 (10) ◽  
pp. 20150813 ◽  
Author(s):  
Wolfgang Kiessling ◽  
Ádám T. Kocsis

Besides helping to identify species traits that are commonly linked to extinction risk, the fossil record may also be directly relevant for assessing the extinction risk of extant species. Standing geographical distribution or occupancy is a strong predictor of both recent and past extinction risk, but the role of changes in occupancy is less widely assessed. Here we demonstrate, based on the Cenozoic fossil record of marine species, that both occupancy and its temporal trajectory are significant determinants of risk. Based on extinct species we develop a model on the additive and interacting effects of occupancy and its temporal changes on extinction risk. We use this model to predict extinction risk of extant species. The predictions suggest a moderate risk for marine species on average. However, some species seem to be on a long-term decline and potentially at a latent extinction risk, which is not considered in current risk assessments.


2019 ◽  
Vol 374 (1781) ◽  
pp. 20190012 ◽  
Author(s):  
Joseph A. Tobias ◽  
Alex L. Pigot

Insights into animal behaviour play an increasingly central role in species-focused conservation practice. However, progress towards incorporating behaviour into regional or global conservation strategies has been more limited, not least because standardized datasets of behavioural traits are generally lacking at wider taxonomic or spatial scales. Here we make use of the recent expansion of global datasets for birds to assess the prospects for including behavioural traits in systematic conservation priority-setting and monitoring programmes. Using International Union for Conservation of Nature Red List classifications for more than 9500 bird species, we show that the incidence of threat can vary substantially across different behavioural categories, and that some types of behaviour—including particular foraging, mating and migration strategies—are significantly more threatened than others. The link between behavioural traits and extinction risk is partly driven by correlations with well-established geographical and ecological factors (e.g. range size, body mass, human population pressure), but our models also reveal that behaviour modifies the effect of these factors, helping to explain broad-scale patterns of extinction risk. Overall, these results suggest that a multi-species approach at the scale of communities, continents and ecosystems can be used to identify and monitor threatened behaviours, and to flag up cases of latent extinction risk, where threatened status may currently be underestimated. Our findings also highlight the importance of comprehensive standardized descriptive data for ecological and behavioural traits, and point the way towards deeper integration of behaviour into quantitative conservation assessments. This article is part of the theme issue ‘Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation’.


2020 ◽  
Vol 60 (2) ◽  
pp. 535-548 ◽  
Author(s):  
Donald B Miles

Synopsis The integrity of regional and local biological diversity is under siege as a result of multiple anthropogenic threats. The conversion of habitats, such as rain forests, into agricultural ecosystems, reduces the area available to support species populations. Rising temperatures and altered rainfall patterns lead to additional challenges for species. The ability of conservation biologists to ascertain the threats to a species requires data on changes in distribution, abundance, life history, and ecology. The International Union for the Conservation of Nature (IUCN) uses these data to appraise the extinction risk for a species. However, many species remain data deficient (DD) or unassessed. Here, I use 14 morphological traits related to locomotor function, habitat, and feeding to predict the threat status of over 400 species of lizards in the infraorder Iguania. Morphological traits are an ideal proxy for making inferences about a species’ risk of extinction. Patterns of morphological covariation have a known association with habitat use, foraging behavior, and physiological performance across multiple taxa. Results from phylogenetic general linear models revealed that limb lengths as well as head characters predicted extinction risk. In addition, I used an artificial neural network (ANN) technique to generate a classification function based on the morphological traits of species with an assigned IUCN threat status. The network approach identified eight morphological traits as predictors of extinction risk, which included head and limb characters. The best supported model had a classification accuracy of 87.4%. Moreover, the ANN model predicted >18% of DD/not assessed species were at risk of extinction. The predicted assessments were supported by other sources of threat status, for example, Convention on International Trade in Endangered Species appendices. Because of the functional link between morphology, performance, and ecology, an ecomorphological approach may be a useful tool for rapid assessment of DD or poorly known species.


Oryx ◽  
2014 ◽  
Vol 48 (2) ◽  
pp. 258-265 ◽  
Author(s):  
M. A. Moraes ◽  
R.A.X. Borges ◽  
E. M. Martins ◽  
R. A. Fernandes ◽  
T. Messina ◽  
...  

AbstractIn Brazil most of the effort for the conservation of plant species has comprised evaluation of taxa for the Lista Oficial das Espécies Ameaçadas de Extinção da Flora Brasileira (Official Threatened Flora Species List), and little has been done to conserve individual species. This is a result of the listing process being interpreted as the final goal rather than as a means to achieve conservation effectiveness. In addition, a variety of systems for the classification of extinction risk have been applied, resulting in an inaccurate view of the conservation status of the flora of the country. Here we review the national listing process to highlight the strengths and weaknesses of the Official Threatened Flora Species List. We used all available information to compile a list of taxa officially recorded as threatened in Brazil. The list was revised using the Flora do Brasil database. The resulting list has 4,967 taxa in 1,235 genera and 232 families. Despite controversies about advances in the Red Listing process, several improvements have been made at the institutional level, such as: (1) improving conservation databases, (2) developing information systems, and (3) increasing the number of taxonomists working in conservation biology. However, there is still no classification system for extinction risk that facilitates standardization of the listing process at the national level. In addition, regulatory processes related to the conservation of threatened plant species are not up-to-date with the conceptual and methodological advances made by the scientific community. We conclude that adjustments are needed to ensure the effectiveness of the conservation of plant species in Brazil.


2012 ◽  
Vol 279 (1744) ◽  
pp. 4024-4032 ◽  
Author(s):  
Lindell Bromham ◽  
Robert Lanfear ◽  
Phillip Cassey ◽  
Gillian Gibb ◽  
Marcel Cardillo

Predicting future species extinctions from patterns of past extinctions or current threat status relies on the assumption that the taxonomic and biological selectivity of extinction is consistent through time. If the driving forces of extinction change through time, this assumption may be unrealistic. Testing the consistency of extinction patterns between the past and the present has been difficult, because the phylogenetically explicit methods used to model present-day extinction risk typically cannot be applied to the data from the fossil record. However, the detailed historical and fossil records of the New Zealand avifauna provide a unique opportunity to reconstruct a complete, large faunal assemblage for different periods in the past. Using the first complete phylogeny of all known native New Zealand bird species, both extant and extinct, we show how the taxonomic and phylogenetic selectivity of extinction, and biological correlates of extinction, change from the pre-human period through Polynesian and European occupation, to the present. These changes can be explained both by changes in primary threatening processes, and by the operation of extinction filter effects. The variable patterns of extinction through time may confound attempts to identify risk factors that apply across time periods, and to infer future species declines from past extinction patterns and current threat status.


Sign in / Sign up

Export Citation Format

Share Document