scholarly journals COADAPTATION OF THE PAYNE INVERSION WITH A PREVIOUSLY UNRELATED GENETIC BACKGROUND IN DROSOPHILA MELANOGASTER

Evolution ◽  
1971 ◽  
Vol 25 (1) ◽  
pp. 207-213
Author(s):  
David T. Kuhn
Genetics ◽  
1972 ◽  
Vol 70 (4) ◽  
pp. 595-610
Author(s):  
Ray Moree

ABSTRACT The viability effects of chromosomes from an old and from a new laboratory strain of D. melanogaster were studied in eight factorial combinations and at two heterozygosity levels. The combinations were so constructed that heterozygosity level could be varied in the third chromosomes of the carriers of a homozygous lethal marker, in the third chromosomes of their wild-type segregants, and in the genetic backgrounds of both. Excluding the effect of the marker and the exceptional outcomes of two of the combinations, and taking into account both large and small deviations from theoretical expectation, the following summary is given as the simplest consistent explanation of the results: 1) If total heterozygosities of two segregant types tend toward equality their viabilities tend toward equality also, whether background heterozygosity is high or low; if background heterozygosities is higher the tendency toward equality is slightly greater. 2) If total heterozygosity of two segregant types are unequal the less heterozygous type has the lower viability; the difference is more pronounced when background heterozygosity is low, less when it is high. 3) Differences between segregant viabilities are correlated with differences between the total heterozygosities of the two segregants; genetic background is effective to the extent, and only to the extent, that it contributes to the magnitude of this difference. This in turn appears to underlie, at least partly, the expression of a pronounced interchromosomal epistasis. Thus in this study viability is seen to depend upon both the quantity and distribution of heterozygosity, not only among the chromosomes of an individual but among the individuals of a given combination as well.


1984 ◽  
Vol 43 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Craig S. Tepper ◽  
Anne L. Terry ◽  
James E. Holmes ◽  
Rollin C. Richmond

SUMMARYThe esterase 6 (Est-6) locus in Drosophila melanogaster is located on the third chromosome and is the structural gene for a carboxylesterase (E.C.3.1.1.1) and is polymorphic for two major electromorphs (slow and fast). Isogenic lines containing X chromosomes extracted from natural populations and substituted into a common genetic background were used to detect unlinked factors that affect the activity of the Est-6 locus. Twofold activity differences of esterase 6 (EST 6) were found among males from these derived lines, which differ only in their X chromosome. These unlinked activity modifiers identify possible regulatory elements. Immunoelectrophoresis was used to estimate quantitatively the levels of specific cross-reacting material in the derived lines. The results show that the variation in activity is due to differences in the amount of EST 6 present. The data are consistent with the hypothesis that there is at least one locus on the X chromosome that regulates the synthesis of EST 6 and that this regulatory locus may be polymorphic in natural populations.


1969 ◽  
Vol 13 (3) ◽  
pp. 313-320 ◽  
Author(s):  
David M. Hunt

A comparison of the gene-environment interactions of the eyg mutant in two different genetic backgrounds clearly demonstrates that the properties of the genetic background play a major role in the control of the gene-environment interactions of this mutant. Similarly, modifier background is important in the determination of the sensitive stages in eye development to a cholesterol-deficient diet.The phenotypic identity of the eyeless and eye-gone mutants suggests a close underlying metabolic and developmental relationship. Possible inter-relations of these two mutant genes are discussed in the light of their gene-environment interactions in a standardized genotype.


1975 ◽  
Vol 26 (1) ◽  
pp. 81-93 ◽  
Author(s):  
R. D. Ward

SUMMARYAlcohol dehydrogenase activity in Drosophila melanogaster may be considered as a quantitative character, since it shows many features typically associated with such traits. Although strains with the electrophoretically fast phenotype generally have activities greater than those with the slow phenotype, presumably reflecting differences in the nucleotide sequences of the structural alleles, within each electrophoretic class there is considerable variation in activity. The expression of the structural gene, in terms of ADH activity, is to some extent regulated by its genetic background. Strains homozygous for particular structural alleles respond to divergent directional selection for ADH activity. Modifiers have been located to the X, second and third chromosomes.


2015 ◽  
Author(s):  
Annat Haber ◽  
Ian Dworkin

The structure of environmentally induced phenotypic covariation can influence the effective strength and magnitude of natural selection. Yet our understanding of the factors that contribute to and influence the evolutionary lability of such covariation is poor. Most studies have either examined environmental variation without accounting for covariation, or examined phenotypic and genetic covariation without distinguishing the environmental component. In this study we examined the effect of mutational perturbations on different properties of environmental covariation, as well as mean shape. We use strains of Drosophila melanogaster bearing well-characterized mutations known to influence wing shape, as well as naturally-derived strains, all reared under carefully-controlled conditions and with the same genetic background. We find that mean shape changes more freely than the covariance structure, and that different properties of the covariance matrix change independently from each other. The perturbations affect matrix orientation more than they affect matrix eccentricity or total variance. Yet, mutational effects on matrix orientation do not cluster according to the developmental pathway that they target. These results suggest that it might be useful to consider a more general concept of 'decanalization', involving all aspects of variation and covariation.


2017 ◽  
Author(s):  
Chengfeng Xiao ◽  
Shuang Qiu ◽  
R Meldrum Robertson

AbstractWe describe persistent one-way walking of Drosophila melanogaster in a circular arena. Wild-type Canton-S adult flies walked in one direction, counter-clockwise or clockwise, for minutes, whereas white-eyed mutant w1118 changed directions frequently. Locomotion in the circular arena could be classified into four components: counter-clockwise walking, clockwise walking, nondirectional walking and pausing. Genetic analysis revealed that while wild-type genetic background was associated with reduced directional change and reduced numbers of one-way (including counterclockwise and clockwise) and nondirectional walks, the white (w+) locus promoted persistent oneway walking by increasing the maximal duration of one-way episodes. The promoting effect of w+ was further supported by the observations that (1) w+ duplicated to the Y chromosome, (2) four genomic copies of mini-white inserted on the autosomes, and (3) pan-neuronal overexpression of the White protein increased the maximal duration of one-way episodes, and that RNAi knockdown of w+ in the neurons decreased the maximal duration of one-way episodes. These results suggested a pleiotropic function of w+ in promoting persistent one-way walking in the circular arena.


Genetics ◽  
1984 ◽  
Vol 108 (4) ◽  
pp. 941-952
Author(s):  
James W Curtsinger

ABSTRACT Selection coefficients and segregation parameters have been estimated in 18 randomly chosen lines carrying wild Χ chromosomes on the cn bw genetic background. Each line was studied in replicated crosses of four types, with approximately 100 replications per line per cross. Crosses in which male Χ chromosomes differed exhibited significant sex ratio heterogeneity. Maximum likelihood estimation of segregation parameters revealed two lines in which the proportion of Χ-bearing gametes produced by males was significantly different from Mendelian expectations. These observations suggest that segregation distortion is a common feature of naturally occurring genetic variation. Non-Mendelian segregation has important evolutionary implications.


Sign in / Sign up

Export Citation Format

Share Document