scholarly journals 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs

2009 ◽  
Vol 67 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Andrea Jaeschke ◽  
Huub J.M. Op den Camp ◽  
Harry Harhangi ◽  
Adam Klimiuk ◽  
Ellen C. Hopmans ◽  
...  
2018 ◽  
Author(s):  
Karen G. Lloyd ◽  
Joshua Ladau ◽  
Andrew D. Steen ◽  
Junqi Yin ◽  
Lonnie Crosby

AbstractTo unequivocally determine a microbe’s physiology, including its metabolism, environmental roles, and growth characteristics, it must be grown in a laboratory culture. Unfortunately, many phylogenetically-novel groups have never been cultured, so their physiologies have only been inferred from genomics and environmental characteristics. Although the diversity, or number of different taxonomic groups, of uncultured clades has been well-studied, their global abundances, or number of cells in any given environment, have not been assessed. We quantified the degree of similarity of 16S rRNA gene sequences from diverse environments in publicly-available metagenome and metatranscriptome databases, which we show are largely free of the culture-bias present in primer-amplified 16S rRNA gene surveys, to their nearest cultured relatives. Whether normalized to scaffold read depths or not, the highest abundance of metagenomic 16S rRNA gene sequences belong to phylogenetically novel uncultured groups in seawater, freshwater, terrestrial subsurface, soil, hypersaline environments, marine sediment, hot springs, hydrothermal vents, non-human hosts, snow and bioreactors (22-87% uncultured genera to classes and 0-64% uncultured phyla). The exceptions were human and human-associated environments which were dominated by cultured genera (45-97%). We estimate that uncultured genera and phyla could comprise 7.3 × 1029(81%) and 2.2 × 1029(25%) microbial cells, respectively. Uncultured phyla were over-represented in meta transcript omes relative to metagenomes (46-84% of sequences in a given environment), suggesting that they are viable, and possibly more active than cultured clades. Therefore, uncultured microbes, often from deeply phylogenetically divergent groups, dominate non-human environments on Earth, and their undiscovered physiologies may matter for Earth systems.


Author(s):  
P. Aguiar ◽  
T. J. Beveridge ◽  
A.-L. Reysenbach

Five hydrogen-oxidizing, thermophilic, strictly chemolithoautotrophic, microaerophilic strains, with similar (99–100 %) 16S rRNA gene sequences were isolated from terrestrial hot springs at Furnas, São Miguel Island, Azores, Portugal. The strain, designated Az-Fu1T, was characterized. The motile, 0·9–2·0 μm rods were Gram-negative and non-sporulating. The temperature growth range was from 50 to 73 °C (optimum at 68 °C). The strains grew fastest in 0·1 % (w/v) NaCl and at pH 6, although growth was observed from pH 5·5 to 7·0. Az-Fu1T can use elemental sulfur, sulfite, thiosulfate, ferrous iron or hydrogen as electron donors, and oxygen (0·2–9·0 %, v/v) as electron acceptor. Az-Fu1T is also able to grow anaerobically, with elemental sulfur, arsenate and ferric iron as electron acceptors. The Az-Fu1T G+C content was 33·6 mol%. Maximum-likelihood analysis of the 16S rRNA phylogeny placed the isolate in a distinct lineage within the Aquificales, closely related to Sulfurihydrogenibium subterraneum (2·0 % distant). The 16S rRNA gene of Az-Fu1T is 7·7 % different from that of Persephonella marina and 6·8 % different from Hydrogenothermus marinus. Based on the phenotypic and phylogenetic characteristics presented here, it is proposed that Az-Fu1T belongs to the recently described genus Sulfurihydrogenibium. It is further proposed that Az-Fu1T represents a new species, Sulfurihydrogenibium azorense.


2004 ◽  
Vol 70 (11) ◽  
pp. 6920-6926 ◽  
Author(s):  
Laura Villanueva ◽  
Antoni Navarrete ◽  
Jordi Urmeneta ◽  
David C. White ◽  
Ricardo Guerrero

ABSTRACT A combined lipid biomarker-16S rRNA gene denaturing gradient gel electrophoresis analysis was used to monitor changes in the physiological status, biomass, and microbial composition of a microbial mat. In the morning hours, an increase in the biomass of layers containing a high density of phototrophs and a decrease in the growth rate in the deep layers were observed. The combined approach also revealed differences in major groups of microorganisms, including green nonsulfur, gram-positive, and heterotrophic bacteria.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 549-555 ◽  
Author(s):  
O. L. Kovaleva ◽  
A. Yu. Merkel ◽  
A. A. Novikov ◽  
R. V. Baslerov ◽  
S. V. Toshchakov ◽  
...  

Three strains of facultatively aerobic, moderately thermophilic bacteria were isolated from terrestrial hot springs in Baikal Lake region and Kamchatka (Russia). Cells of the new isolates were cocci reproducing by binary fission. The temperature range for growth was between 20 and 56 °C and the pH range for growth from pH 4.5 to 8.5, with optimal growth at 47–50 °C and pH 7.0–7.5. The organisms were chemoheterotrophs preferring sugars and polysaccharides as growth substrates. 16S rRNA gene sequences of strains 2842, 2813 and 2918Kr were nearly identical (99.7–100 % similarity) and indicated that the strains belonged to the phylum Planctomycetes . The phylogenetically closest cultivated relatives were Algisphaera agarilytica 06SJR6-2T and Phycisphaera mikurensis FYK2301M01T with 16S rRNA gene sequence similarity values of 82.4 and 80.3 %, respectively. The novel strains differed from them by higher growth temperature, sensitivity to NaCl concentration above 3.0 % and by their cellular fatty acids profile. On the basis of phylogenetic and physiological data, strains 2842T, 2813 and 2918Kr represent a novel genus and species for which we propose the name Tepidisphaera mucosa sp. nov. The type strain is 2842T ( = VKM B-2832T = JCM 19875T). We also propose that Tepidisphaera gen. nov. is the type genus of a novel family, Tepidisphaeraceae fam. nov. and a novel order, Tepidisphaerales ord. nov.


Archaea ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tomoko Satoh ◽  
Keiko Watanabe ◽  
Hideo Yamamoto ◽  
Shuichi Yamamoto ◽  
Norio Kurosawa

Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L−1, (2) Pond-B: 66°C and 2248 mg L−1, (3) Pond-C: 88°C and 198 mg L−1, and (4) Pond-D: 67°C and 340 mg L−1. In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53350 ◽  
Author(s):  
Weiguo Hou ◽  
Shang Wang ◽  
Hailiang Dong ◽  
Hongchen Jiang ◽  
Brandon R. Briggs ◽  
...  

2010 ◽  
Vol 60 (9) ◽  
pp. 2082-2088 ◽  
Author(s):  
Anna A. Perevalova ◽  
Salima Kh. Bidzhieva ◽  
Ilya V. Kublanov ◽  
Kai-Uwe Hinrichs ◽  
Xiaolei L. Liu ◽  
...  

Two novel thermophilic and slightly acidophilic strains, Kam940T and Kam1507b, which shared 99 % 16S rRNA gene sequence identity, were isolated from terrestrial hot springs of the Uzon caldera on the Kamchatka peninsula. Cells of both strains were non-motile, regular cocci. Growth was observed between 55 and 85 °C, with an optimum at 65–70 °C (doubling time, 6.1 h), and at pH 4.5–7.5, with optimum growth at pH 5.5–6.0. The isolates were strictly anaerobic organotrophs and grew on a narrow spectrum of energy-rich substrates, such as beef extract, gelatin, peptone, pyruvate, sucrose and yeast extract, with yields above 107 cells ml−1. Sulfate, sulfite, thiosulfate and nitrate added as potential electron acceptors did not stimulate growth when tested with peptone. H2 at 100 % in the gas phase inhibited growth on peptone. Glycerol dibiphytanyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl rings were present in the lipid fraction of isolate Kam940T. The G+C content of the genomic DNA of strain Kam940T was 37 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were archaea of the phylum Crenarchaeota, only distantly related to the cultured members of the class Thermoprotei (no more than 89 % identity), and formed an independent lineage adjacent to the orders Desulfurococcales and Acidilobales and clustering only with uncultured clones from hot springs of Yellowstone National Park and Iceland as the closest relatives. On the basis of their phylogenetic position and novel phenotypic features, isolates Kam940T and Kam1507b are proposed to be assigned to a new genus and species, Fervidicoccus fontis gen. nov., sp. nov. The type strain of Fervidicoccus fontis is strain Kam940T (=DSM 19380T =VKM B-2539T). The phylogenetic data as well as phenotypic properties suggest that the novel crenarchaeotes form the basis of a new family, Fervidicoccaceae fam. nov., and order, Fervidicoccales ord. nov., within the class Thermoprotei.


2017 ◽  
Author(s):  
Svetlana V. Zaitseva ◽  
Elena V. Lavrentieva ◽  
Aryuna A. Radnagurueva ◽  
Olga A. Baturina ◽  
Marsel R. Kabilov ◽  
...  

Alkaline hot springs are unique extreme habitats resemble the early Earth and present a valuable resource for the discovery of procaryotic community diversity and isolation of the novel thermophilic Bacteria and Archaea. One of the model for the possible origin of biochemistry in alkaline hot springs revealed the acetyl-CoA pathway of CO2 fixation might be the most ancient form of carbon metabolism. Recent phylogenetic studies have suggested that the phylum Acetothermia is one of the deep branches of the Bacteria domain. Firstly Acetothermia (Candidate division OP1) was characterized in a culture independent molecular phylogenetic survey based on the 16S rRNA gene of the sulfide-rich hot spring, Obsidian Pool, a 75 to 95oC hot spring. Two nearly complete genomes of Acetothermia were established based on genome-resolved metagenomic analysis and its capability of implementing acetogenesis through the ancient reductive acetyl-CoA pathway by utilizing CO2 and H2 was revealed. Although genomic, proteomic and metagenomic approaches investigate basic metabolism and potentional energy conservation of uncultivated candidate phyla but ecological roles of these bacteria and general patterns of diversity and community structure stay unclear. General hydrochemical and geological characterization of alkaline thermal springs of the Baikal Rift zone with high silica concentrations and a nitrogen dominated gas phase is provided. Previous microbiogical studies based on culture-dependent methods recovered a large number of bacterial strains from thermal springs located in Baikal Rift zone. We combined microbial communities analysis by using high-throughput 16S rRNA gene sequencing, biogeochemical measurements, sediment mineralogy and physicochemical characteristics to investigate ecosystems of alkaline hot springs located in the Baikal Rift zone. Uncultivated bacteria belonging to the phylum Acetothermia, along with members of the phyla Firmicutes and Proteobacteria, were identified as the dominant group in hydrothermal sediments communities in the alkaline hot springs of Baikal Rift zone. In bottom sediments of the Alla hot spring, about 57% of all classified sequences represent this phylum. Geochemistry of fluids and sample type were strongly correlated with microbial community composition. The Acetothermia exhibited the highest relative abundance in sediment microbial community associated with alkaline thermal fluids enriched in Fe, Zn, Ni, Al and Cr.


Sign in / Sign up

Export Citation Format

Share Document