scholarly journals Phylogenetically novel uncultured microbial cells dominate Earth microbiomes

2018 ◽  
Author(s):  
Karen G. Lloyd ◽  
Joshua Ladau ◽  
Andrew D. Steen ◽  
Junqi Yin ◽  
Lonnie Crosby

AbstractTo unequivocally determine a microbe’s physiology, including its metabolism, environmental roles, and growth characteristics, it must be grown in a laboratory culture. Unfortunately, many phylogenetically-novel groups have never been cultured, so their physiologies have only been inferred from genomics and environmental characteristics. Although the diversity, or number of different taxonomic groups, of uncultured clades has been well-studied, their global abundances, or number of cells in any given environment, have not been assessed. We quantified the degree of similarity of 16S rRNA gene sequences from diverse environments in publicly-available metagenome and metatranscriptome databases, which we show are largely free of the culture-bias present in primer-amplified 16S rRNA gene surveys, to their nearest cultured relatives. Whether normalized to scaffold read depths or not, the highest abundance of metagenomic 16S rRNA gene sequences belong to phylogenetically novel uncultured groups in seawater, freshwater, terrestrial subsurface, soil, hypersaline environments, marine sediment, hot springs, hydrothermal vents, non-human hosts, snow and bioreactors (22-87% uncultured genera to classes and 0-64% uncultured phyla). The exceptions were human and human-associated environments which were dominated by cultured genera (45-97%). We estimate that uncultured genera and phyla could comprise 7.3 × 1029(81%) and 2.2 × 1029(25%) microbial cells, respectively. Uncultured phyla were over-represented in meta transcript omes relative to metagenomes (46-84% of sequences in a given environment), suggesting that they are viable, and possibly more active than cultured clades. Therefore, uncultured microbes, often from deeply phylogenetically divergent groups, dominate non-human environments on Earth, and their undiscovered physiologies may matter for Earth systems.

mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Karen G. Lloyd ◽  
Andrew D. Steen ◽  
Joshua Ladau ◽  
Junqi Yin ◽  
Lonnie Crosby

ABSTRACTTo describe a microbe’s physiology, including its metabolism, environmental roles, and growth characteristics, it must be grown in a laboratory culture. Unfortunately, many phylogenetically novel groups have never been cultured, so their physiologies have only been inferred from genomics and environmental characteristics. Although the diversity, or number of different taxonomic groups, of uncultured clades has been studied well, their global abundances, or numbers of cells in any given environment, have not been assessed. We quantified the degree of similarity of 16S rRNA gene sequences from diverse environments in publicly available metagenome and metatranscriptome databases, which we show have far less of the culture bias present in primer-amplified 16S rRNA gene surveys, to those of their nearest cultured relatives. Whether normalized to scaffold read depths or not, the highest abundances of metagenomic 16S rRNA gene sequences belong to phylogenetically novel uncultured groups in seawater, freshwater, terrestrial subsurface, soil, hypersaline environments, marine sediment, hot springs, hydrothermal vents, nonhuman hosts, snow, and bioreactors (22% to 87% uncultured genera to classes and 0% to 64% uncultured phyla). The exceptions were human and human-associated environments, which were dominated by cultured genera (45% to 97%). We estimate that uncultured genera and phyla could comprise 7.3 × 1029(81%) and 2.2 × 1029(25%) of microbial cells, respectively. Uncultured phyla were overrepresented in metatranscriptomes relative to metagenomes (46% to 84% of sequences in a given environment), suggesting that they are viable. Therefore, uncultured microbes, often from deeply phylogenetically divergent groups, dominate nonhuman environments on Earth, and their undiscovered physiologies may matter for Earth systems.IMPORTANCEIn the past few decades, it has become apparent that most of the microbial diversity on Earth has never been characterized in laboratory cultures. We show that these unknown microbes, sometimes called “microbial dark matter,” are numerically dominant in all major environments on Earth, with the exception of the human body, where most of the microbes have been cultured. We also estimate that about one-quarter of the population of microbial cells on Earth belong to phyla with no cultured relatives, suggesting that these never-before-studied organisms may be important for ecosystem functions.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Sarah L. Westcott ◽  
Patrick D. Schloss

ABSTRACT Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Podcast: A podcast concerning this article is available.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 650-656 ◽  
Author(s):  
Hong Ming ◽  
Yi-Rui Yin ◽  
Shuai Li ◽  
Guo-Xing Nie ◽  
Tian-Tian Yu ◽  
...  

Two thermophilic bacterial strains, designated YIM 77925T and YIM 77777, were isolated from two hot springs, one in the Hydrothermal Explosion (Shuirebaozhaqu) area and Frog Mouth Spring in Tengchong county, Yunnan province, south-western China. The taxonomic positions of the two isolates were investigated by a polyphasic approach. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They were able to grow at 50–70 °C, pH 6.0–8.0 and with a NaCl tolerance up to 0.5 % (w/v). Colonies are circular, convex, non-transparent and produce yellow pigment. Phylogenetic analyses based on 16S rRNA gene sequences comparison clearly demonstrated that strains YIM 77925T and YIM 77777 represent members of the genus Thermus , and they also detected low-level similarities of 16S rRNA gene sequences (below 97 %) compared with all other species in this genus. Their predominant menaquinone was MK-8. The genomic DNA G+C contents of strains YIM 77925T and YIM 77777 were 65.6 mol% and 67.2 mol%, respectively. Based on the results of physiological and biochemical tests and phylogenetic analyses, strains YIM 77925T and YIM 77777 could not be classified as representing any species of the genus Thermus with a validly published name. Thus the two strains are considered to represent a novel species of the genus Thermus , for which the name Thermus caliditerrae sp. nov. is proposed. The type strain is YIM 77925T ( = DSM 25901T = CCTCC 2012061T).


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


2007 ◽  
Vol 73 (20) ◽  
pp. 6682-6685 ◽  
Author(s):  
Daniel P. R. Herlemann ◽  
Oliver Geissinger ◽  
Andreas Brune

ABSTRACT The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of “Endomicrobia,” which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to “Endomicrobia.” Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.


2005 ◽  
Vol 71 (10) ◽  
pp. 6308-6318 ◽  
Author(s):  
Helen A. Vrionis ◽  
Robert T. Anderson ◽  
Irene Ortiz-Bernad ◽  
Kathleen R. O'Neill ◽  
Charles T. Resch ◽  
...  

ABSTRACT The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


2008 ◽  
Vol 74 (10) ◽  
pp. 3198-3215 ◽  
Author(s):  
Enoma O. Omoregie ◽  
Vincent Mastalerz ◽  
Gert de Lange ◽  
Kristina L. Straub ◽  
Andreas Kappler ◽  
...  

ABSTRACT In this study we determined the composition and biogeochemistry of novel, brightly colored, white and orange microbial mats at the surface of a brine seep at the outer rim of the Chefren mud volcano. These mats were interspersed with one another, but their underlying sediment biogeochemistries differed considerably. Microscopy revealed that the white mats were granules composed of elemental S filaments, similar to those produced by the sulfide-oxidizing epsilonproteobacterium “Candidatus Arcobacter sulfidicus.” Fluorescence in situ hybridization indicated that microorganisms targeted by a “Ca. Arcobacter sulfidicus”-specific oligonucleotide probe constituted up to 24% of the total the cells within these mats. Several 16S rRNA gene sequences from organisms closely related to “Ca. Arcobacter sulfidicus” were identified. In contrast, the orange mat consisted mostly of bright orange flakes composed of empty Fe(III) (hydr)oxide-coated microbial sheaths, similar to those produced by the neutrophilic Fe(II)-oxidizing betaproteobacterium Leptothrix ochracea. None of the 16S rRNA gene sequences obtained from these samples were closely related to sequences of known neutrophilic aerobic Fe(II)-oxidizing bacteria. The sediments below both types of mats showed relatively high sulfate reduction rates (300 nmol·cm−3·day−1) partially fueled by the anaerobic oxidation of methane (10 to 20 nmol·cm−3·day−1). Free sulfide produced below the white mat was depleted by sulfide oxidation within the mat itself. Below the orange mat free Fe(II) reached the surface layer and was depleted in part by microbial Fe(II) oxidation. Both mats and the sediments underneath them hosted very diverse microbial communities and contained mineral precipitates, most likely due to differences in fluid flow patterns.


Sign in / Sign up

Export Citation Format

Share Document