NEUTROPHIL AGGREGATION - FACTORS MODULATING STIMULUS-SPECIFIC RESPONSES

Author(s):  
BO Ringertz
Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 500
Author(s):  
William Brad Hubbard ◽  
Meenakshi Banerjee ◽  
Hemendra Vekaria ◽  
Kanakanagavalli Shravani Prakhya ◽  
Smita Joshi ◽  
...  

Traumatic brain injury (TBI) affects over 3 million individuals every year in the U.S. There is growing appreciation that TBI can produce systemic modifications, which are in part propagated through blood–brain barrier (BBB) dysfunction and blood–brain cell interactions. As such, platelets and leukocytes contribute to mechanisms of thromboinflammation after TBI. While these mechanisms have been investigated in experimental models of contusion brain injury, less is known regarding acute alterations following mild closed head injury. To investigate the role of platelet dynamics and bioenergetics after TBI, we employed two distinct, well-established models of TBI in mice: the controlled cortical impact (CCI) model of contusion brain injury and the closed head injury (CHI) model of mild diffuse brain injury. Hematology parameters, platelet-neutrophil aggregation, and platelet respirometry were assessed acutely after injury. CCI resulted in an early drop in blood leukocyte counts, while CHI increased blood leukocyte counts early after injury. Platelet-neutrophil aggregation was altered acutely after CCI compared to sham. Furthermore, platelet bioenergetic coupling efficiency was transiently reduced at 6 h and increased at 24 h post-CCI. After CHI, oxidative phosphorylation in intact platelets was reduced at 6 h and increased at 24 h compared to sham. Taken together, these data demonstrate that brain trauma initiates alterations in platelet-leukocyte dynamics and platelet metabolism, which may be time- and injury-dependent, providing evidence that platelets carry a peripheral signature of brain injury. The unique trend of platelet bioenergetics after two distinct types of TBI suggests the potential for utilization in prognosis.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3460-3468 ◽  
Author(s):  
YP Rochon ◽  
MM Frojmovic

Abstract We have recently described a flow cytometry technique, whose sensitivity allows direct measurements of latent times before the onset of aggregation, and of rates, maximal extents, and reversibility of aggregation (J Leuk Biol 50:434, 1991). We report here that activators which stimulate sustained cellular signaling associated with increases in intracellular calcium (ionomycin) or protein kinase C activation (phorbol myristate acetate, PMA) cause complete (> or = 98%) and irreversible neutrophil aggregation, with latent times for the onset of aggregation inversely proportional to the activator concentration. In contrast, the receptor-specific activators leukotriene B4 (LTB4), formyl peptide FMLP, and platelet-activating factor (PAF) gave only partial and reversible aggregatory responses, limited by the following similar properties: latent times of 4.5 seconds +/- 1.5 seconds, independent of activator concentration; similar concentrations for onset of aggregation (approximately 1 nmol/L) that increased over a similar broad range of activator concentration, with one-half maximal rates of aggregation at 10 nmol/L to 30 nmol/L, corresponding to reported dissociation constant values; comparable limited recruitment and spontaneous reversibility of aggregation; absence of interactivator synergism; and similar exponential decays in activated cell stickiness (refractoriness), with t1/2 = 15 to 30 seconds. Variable cross- desensitization was seen between LTB4 and FMLP depending on donor and activator concentrations. In vivo, these properties are expected to provide localization of the aggregatory response, minimizing the otherwise detrimental effects of circulating activated neutrophils.


Circulation ◽  
1998 ◽  
Vol 98 (9) ◽  
pp. 873-882 ◽  
Author(s):  
Konstantinos Konstantopoulos ◽  
Sriram Neelamegham ◽  
Alan R. Burns ◽  
Eric Hentzen ◽  
Geoffrey S. Kansas ◽  
...  

2008 ◽  
Vol 16 (1) ◽  
pp. 43-55 ◽  
Author(s):  
U. LIPPI ◽  
P. BELLAVITE ◽  
M. SCHINELLA ◽  
M. NICOLI ◽  
G. LIPPI

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1230
Author(s):  
Benjamin Neuditschko ◽  
Marlene Leibetseder ◽  
Julia Brunmair ◽  
Gerhard Hagn ◽  
Lukas Skos ◽  
...  

Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients’ quality of life. Yet, a molecular mechanism of this pathology, including the formation of pain, remains to be defined. Recent studies have indicated a close interaction between newly generated nerve cells and macrophages, leading to neurogenic inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture model was characterized upon inflammatory stimulation by employing a multi-omics approach, including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the 12-Z endometriotic cell line treated with TNFα and IL1β unexpectedly showed that the inflammatory stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically including neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin (BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the development of neuropathic pain and the former three were found up-regulated upon inflammatory stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE, a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct involvement of these epithelial-like cells in endometriosis pain development.


2005 ◽  
Vol 41 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Clyde Don ◽  
Wim J. Lichtendonk ◽  
Johan J. Plijter ◽  
Ton van Vliet ◽  
Rob J. Hamer

Inflammation ◽  
1977 ◽  
Vol 2 (4) ◽  
pp. 265-276 ◽  
Author(s):  
J. T. O'Flaherty ◽  
H. J. Showell ◽  
P. A. Ward

Sign in / Sign up

Export Citation Format

Share Document