Influence of Differently Oriented Dentin Surfaces and the Regional Variation of Specimens on Adhesive Layer Thickness and Bond Strength

2008 ◽  
Vol 20 (2) ◽  
pp. 119-128 ◽  
Author(s):  
FLÁVIA BITTENCOURT PAZINATTO ◽  
MARIA TERESA ATTA
2021 ◽  
Vol 11 (6) ◽  
pp. 2635
Author(s):  
Naji Kharouf ◽  
Tarek Ashi ◽  
Ammar Eid ◽  
Levi Maguina ◽  
Jihed Zghal ◽  
...  

(1) Background: This study investigated the effect of the adhesive layer thickness and the length of resin tags on dentin bond strength of five universal adhesives applied in self-etch mode. (2) Methods: One hundred and fifty extracted human third molars were used. Five different universal adhesives were applied in self-etch mode on the dentin surface. Half of the specimens were subjected to an aging procedure for six months. A shear bond strength (SBS) test was performed and the results were statistically analyzed with a t-test and one-way ANOVA test. Scanning electron microscopy (SEM) was executed to measure the adhesive layer thickness and tag depth. (3) Results: No statistical differences were found between the five adhesive systems after a 24 h storage period, regardless of layer thickness and tag depth (p < 0.05). After 6 months of aging in water at 37 °C, Iperbond Max and Scotchbond Universal preserved the bond strength over time (p < 0.05), whilst the SBS of Iperbond Ultra, FuturaBond M+, and Ibond Universal decreased significantly after the aging period. No relation was observed between the adhesive thickness or tags’ length on SBS. (4) Conclusions: Within the limitation of this study, the stability over time of the bond strength of universal adhesives depends on their compositions regardless of the adhesive layer thickness and/or tags’ length.


2003 ◽  
Vol 38 (3) ◽  
pp. 233-245 ◽  
Author(s):  
T Yokoyama

The tensile strength and energy absorption of adhesive butt joints at high rates of loading are determined with a tensile split Hopkinson bar using a cylindrical specimen. A commercially available single-component cyanoacrylate adhesive (instantaneous adhesive) and two different adherend materials are used in the adhesion tests. The impact tensile strength of the cyanoacrylate adhesive butt joints is determined from the applied tensile stress history at failure initiation. The impact absorbed energy is obtained by numerical integration of dynamic tensile load-adhesive deformation data. Comparative tension tests at low and intermediate rates of loading are performed on an Instron testing machine. An axisymmetric finite element analysis is carried out to investigate the stress distributions in the adhesive layer of the cyanoacrylate adhesive butt joints. The effects of loading rate, adherend material and adhesive layer thickness on the tensile strength and energy absorption of the cyanoacrylate adhesive butt joints are examined in detail. It is shown that the joint tensile strength increases significantly with increasing loading rate and is greatly affected by both the adhesive layer thickness and the adherend materials. The limitations of the technique are discussed.


Sign in / Sign up

Export Citation Format

Share Document