Effects of Glass Fiber Layering on the Flexural Strength of Microfill and Hybrid Composites

2009 ◽  
Vol 21 (3) ◽  
pp. 171-178 ◽  
Author(s):  
NESRIN ERONAT ◽  
ÜMIT CANDAN ◽  
MURAT TÜRKÜN
2020 ◽  
pp. 152808372095803
Author(s):  
Abderrazek Merzoug ◽  
Bachir Bouhamida ◽  
Zouaoui Sereir ◽  
Abderrezak Bezazi ◽  
Ali Kilic ◽  
...  

The present work reports an experimental study on the thermal and mechanical properties of hybrid composites obtained from Petiole Date Palm Fiber (PDPF)/Glass fiber (GF) as reinforcement and vinylester resin (VE). In order to improve the fiber/matrix adhesion, palm fibers were alkali treated with 5% NaOH solution for 24 h–72h. SEM and ATR-FTIR analysis revealed that the 48 h treatment of PDFP with NaOH solution led to rough fiber surface. Vacuum assisted resin transfer molding (VARTM) system was used to produce four hybrid composites (30PDPF/0GF, 20PDPF/10GF, 10PDPF/20GF and 0PDPF/30GF) where the weight ratio of total fiber reinforcement was kept 30%. The treated palm fibers were arranged as a nonwoven mat and placed between woven glass fabrics. Tensile, flexural, dynamic mechanical thermal analysis (DMTA), and thermogravimetric (TGA) were carried out to evaluate the performance of the hybrid composites. The flexural strength and modulus for pure PDPF composite were found to be 60 MPa and 3.87 GPa respectively. Addition of 20%wt glass fiber led an increase in the thermal stability and an enhancement in the tensile and flexural strength by 71.72% and 74.51%, respectively compared to pure PDPF composite. However, the incorporation of 10% of PDPF increases the damping factor from 0.2 for the composite glass/VE to 0.54 for the hybrid 10PDPF/20GF. According to findings of this study, PDPF based composites can be used as non-structural parts in automotive and boat industries.


Author(s):  
Veenapani R

Abstract: In the current study, flexural strength of combination of natural and synthetic fiber with particle filled hybrid composites have been studied. The flexural strength of the hybrid composite mainly depends on the proportion of the sisal fiber weight, glass fiber weight and alumina weight. Taguchi technique has been applied to find the optimized parameters of the developed hybrid composites. Results were obtained for the L9 orthogonal combination from experimentation. The results were analysed with the help of Signal/Noise (S/N) Ratio, Main effect plot and Analysis of variance (ANOVA) using Mini Tab 19. Regression equation are developed for all three reinforcements separately. From the current study it was observed that the flexural strength of the hybrid composite mainly depends on the sisal fiber precent that the other two reinforcements. Based on the experimental observations the maximum ultimate flexural strength was found to be 145.97 MPa for optimised input parameters as 20% of sisal fiber, 20% of glass fiber and 2% of alumina. Keywords: Taguchi technique, ANOVA, Flexural strength, Sisal fiber, Glass Fiber, Alumina


2015 ◽  
Vol 766-767 ◽  
pp. 178-182
Author(s):  
N.R.R. Anbusagar ◽  
K. Palanikumar ◽  
R. Mohanarangan ◽  
P. Sengottuvel

In order characterize the outstanding performance of the three dimensional (3D) hybrid composites, the charpy and flexural test has been carried out. 3D fiber structures have been achieved by using hand lay-up process and machine stitching method. Materials for hand lay-up and machine stitching process were glass fiber, jute fiber, and epoxy resin and nylon fiber respectively. Two dimensional (2D) glass fiber composite and 2D hybrid composite with the same stacking sequence as three dimensional (3D) counterparts have also been fabricated for the comparison of impact and flexural strength. The impact strength of 3D hybrid composite was increased (5-10%) compared with that 2D glass fiber and 2D hybrid composites. The flexural strength and modulus of 3D hybrid composite were increased (5-10%) compared with that of 2D hybrid composites.


2016 ◽  
Vol 51 (2) ◽  
pp. 81-88
Author(s):  
MR Hassan ◽  
MA Gafur ◽  
AA Rana ◽  
MR Qadir ◽  
SM Masum ◽  
...  

In this research work an attempt is made to fabricate a hybrid composite material with hessian cloth (natural fiber) and glass fiber (synthet ic fiber) in polyester matrix using hand lay-up process and testing was performed by ASTM standards. Main objective of this research work is to investigate the effects of use of natural fiber in the composite material with the synthetic fiber. Experimental results revealed that hybridization of composite with natural and synthetic fibers shows promising tensile strength, flexural strength and hardness. Among the hybrid composites one with the composition of three layers of glass fibers and two layers of hessian cloth (jute fiber) showed highest ten sile strength and flexural strength which were found 104.63 MPa and 134.65 MPa respectively. Water absorption was high in composites having higher hessian cloth content than glass fiber. Composite with high glass fiber content showed high hardness which was 39.9 HV.Bangladesh J. Sci. Ind. Res. 51(2), 81-88, 2016


2017 ◽  
Vol 904 ◽  
pp. 151-154 ◽  
Author(s):  
C.S. Suhas Kowshik ◽  
Pavan Hiremath ◽  
Manjunath Shettar ◽  
Nithesh Naik

In this study, hybrid composites were prepared using chicken feather as filler material. Hybrid composites were tested for tensile and flexural strength. Composites were prepared by hand-layup technique by varying the weight percentage of chicken feather (0, 4, 8 wt.%). Samples were tested according to ASTM standard. SEM images were studied to find the fracture and interfacial characteristics of the composites. Results indicated that, these composites can be used in domestic, automobile and structural applications, where minimal load is applied.


2019 ◽  
Vol 61 (11) ◽  
pp. 1095-1100 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Kathiravan Subramaniam ◽  
Ng Lin Feng ◽  
Siti Hajar Sheikh MD Fadzullah ◽  
Sivaraos Subramonian

2021 ◽  
pp. 089270572199319
Author(s):  
Gustavo B Carvalho

Ternary hybrid composites of Polypropylene (PP)/Short Glass Fibers (GF)/Hollow Glass Beads (HGB) were prepared using untreated and aminosilane-treated HGB, compatibilized with maleated-PP, and with varying total and relative GF/HGB contents. Static/short-term flexural strength properties data revealed, through lower flexural strength values, that the presence of untreated HGB particles induces to fiber-polymer interfacial decoupling at much higher extent than in the presence of aminosilane-treated HGB particles. This phenomenon is also evident when evaluating the data from displacement-controlled three-point bending fatigue tests. Monitored up to 106 cycles, the analyzed hybrid composites presented distinct performance relative to their fatigue stress relaxation rate: the lower the matrix-reinforcements’ interfacial adhesion, more pronounced the stress relaxation rate as a function of the number of fatigue cycles. Dynamic Mechanical Thermal Analysis (DMTA) results could successfully reveal the hybrid composites behavior at the microstructural level when they were submitted to both static flexural test and fatigue, depending on the degree of interfacial interactions between the polymer matrix of PP and the hybrid reinforcements of GF and HGB (with and without aminosilane surface treatment).


Sign in / Sign up

Export Citation Format

Share Document