Allele frequencies of the extension locus encoding the melanocortin-1 receptor in Japanese and Korean cattle

2005 ◽  
Vol 76 (2) ◽  
pp. 129-132 ◽  
Author(s):  
Shinji SASAZAKI ◽  
Munehiro USUI ◽  
Hideyuki MANNEN ◽  
Chihiro HIURA ◽  
Soichi TSUJI
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yong-Chan Kim ◽  
Seon-Kwan Kim ◽  
Sae-Young Won ◽  
Byung-Hoon Jeong

Abstract Bovine spongiform encephalopathy (BSE) is a fatal infectious neurodegenerative disease caused by the accumulation of pathogenic prion protein (PrPSc) in the central nervous system (CNS), particularly in the brain. In a recent study, the shadow of prion protein (Sho), encoded by the shadow of prion protein (SPRN) gene, accelerates the progression of prion diseases, and a 12-bp insertion/deletion polymorphism in the coding region of the SPRN gene is associated with susceptibility to atypical BSE-affected Polish cattle. To date, the genetic study of the SPRN gene in Korean cattle has not been performed. In this study, we investigated the genotype and allele frequencies of SPRN polymorphisms in 235 Hanwoo and 212 Holstein cattle and analyzed the linkage disequilibrium (LD) and haplotypes of SPRN polymorphisms. In addition, we compared the distribution of the 12-bp insertion/deletion polymorphism between atypical BSE-diagnosed Polish cattle and Korean cattle to evaluate the susceptibility of atypical BSE. Furthermore, we estimated a deleterious effect of polymorphisms on the Sho protein using PROVEAN. We found a total of seven polymorphisms, including one novel single nucleotide polymorphism (SNP), c.231G>A. We also found significantly different distributions of genotype, allele and haplotype frequencies of seven polymorphisms between Hanwoo and Korean Holstein cattle. In addition, all polymorphisms showed strong LDs among the seven polymorphisms. Interestingly, Hanwoo cattle showed more potential susceptible distribution in the genotype and allele frequencies of the 12-bp insertion/deletion polymorphisms of the SPRN gene than Holstein cattle. Finally, using PROVEAN, we found one novel deleterious nonsynonymous SNP to Sho protein, c.110G>C (G37A). To the best of our knowledge, this is the first study of the SPRN gene in Korean cattle.


Genetics ◽  
1999 ◽  
Vol 151 (3) ◽  
pp. 1053-1063 ◽  
Author(s):  
Ilik J Saccheri ◽  
Ian J Wilson ◽  
Richard A Nichols ◽  
Michael W Bruford ◽  
Paul M Brakefield

Abstract Polymorphic enzyme and minisatellite loci were used to estimate the degree of inbreeding in experimentally bottlenecked populations of the butterfly, Bicyclus anynana (Satyridae), three generations after founding events of 2, 6, 20, or 300 individuals, each bottleneck size being replicated at least four times. Heterozygosity fell more than expected, though not significantly so, but this traditional measure of the degree of inbreeding did not make full use of the information from genetic markers. It proved more informative to estimate directly the probability distribution of a measure of inbreeding, σ2, the variance in the number of descendants left per gene. In all bottlenecked lines, σ2 was significantly larger than in control lines (300 founders). We demonstrate that this excess inbreeding was brought about both by an increase in the variance of reproductive success of individuals, but also by another process. We argue that in bottlenecked lines linkage disequilibrium generated by the small number of haplotypes passing through the bottleneck resulted in hitchhiking of particular marker alleles with those haplotypes favored by selection. In control lines, linkage disequilibrium was minimal. Our result, indicating more inbreeding than expected from demographic parameters, contrasts with the findings of previous (Drosophila) experiments in which the decline in observed heterozygosity was slower than expected and attributed to associative overdominance. The different outcomes may both be explained as a consequence of linkage disequilibrium under different regimes of inbreeding. The likelihood-based method to estimate inbreeding should be of wide applicability. It was, for example, able to resolve small differences in σ2 among replicate lines within bottleneck-size treatments, which could be related to the observed variation in reproductive viability.


2021 ◽  
Vol 11 (3) ◽  
pp. 231
Author(s):  
Faven Butler ◽  
Ali Alghubayshi ◽  
Youssef Roman

Gout is an inflammatory condition caused by elevated serum urate (SU), a condition known as hyperuricemia (HU). Genetic variations, including single nucleotide polymorphisms (SNPs), can alter the function of urate transporters, leading to differential HU and gout prevalence across different populations. In the United States (U.S.), gout prevalence differentially affects certain racial groups. The objective of this proposed analysis is to compare the frequency of urate-related genetic risk alleles between Europeans (EUR) and the following major racial groups: Africans in Southwest U.S. (ASW), Han-Chinese (CHS), Japanese (JPT), and Mexican (MXL) from the 1000 Genomes Project. The Ensembl genome browser of the 1000 Genomes Project was used to conduct cross-population allele frequency comparisons of 11 SNPs across 11 genes, physiologically involved and significantly associated with SU levels and gout risk. Gene/SNP pairs included: ABCG2 (rs2231142), SLC2A9 (rs734553), SLC17A1 (rs1183201), SLC16A9 (rs1171614), GCKR (rs1260326), SLC22A11 (rs2078267), SLC22A12 (rs505802), INHBC (rs3741414), RREB1 (rs675209), PDZK1 (rs12129861), and NRXN2 (rs478607). Allele frequencies were compared to EUR using Chi-Square or Fisher’s Exact test, when appropriate. Bonferroni correction for multiple comparisons was used, with p < 0.0045 for statistical significance. Risk alleles were defined as the allele that is associated with baseline or higher HU and gout risks. The cumulative HU or gout risk allele index of the 11 SNPs was estimated for each population. The prevalence of HU and gout in U.S. and non-US populations was evaluated using published epidemiological data and literature review. Compared with EUR, the SNP frequencies of 7/11 in ASW, 9/11 in MXL, 9/11 JPT, and 11/11 CHS were significantly different. HU or gout risk allele indices were 5, 6, 9, and 11 in ASW, MXL, CHS, and JPT, respectively. Out of the 11 SNPs, the percentage of risk alleles in CHS and JPT was 100%. Compared to non-US populations, the prevalence of HU and gout appear to be higher in western world countries. Compared with EUR, CHS and JPT populations had the highest HU or gout risk allele frequencies, followed by MXL and ASW. These results suggest that individuals of Asian descent are at higher HU and gout risk, which may partly explain the nearly three-fold higher gout prevalence among Asians versus Caucasians in ambulatory care settings. Furthermore, gout remains a disease of developed countries with a marked global rising.


Author(s):  
Hua Yang ◽  
Feng Gao ◽  
Brooke McNeil ◽  
Chengcheng Zhang ◽  
Zheliang Yuan ◽  
...  

Abstract Background 64Cu is one of the few radioisotopes that can be used for both imaging and therapy, enabling theranostics with identical chemical composition. Development of stable chelators is essential to harness the potential of this isotope, challenged by the presence of endogenous copper chelators. Pyridyl type chelators show good coordination ability with copper, prompting the present study of a series of chelates DOTA-xPy (x = 1–4) that sequentially substitute carboxyl moieties with pyridyl moieties on a DOTA backbone. Results We found that the presence of pyridyl groups significantly increases 64Cu labeling conversion yield, with DOTA-2Py, −3Py and -4Py quantitatively complexing 64Cu at room temperature within 5 min (1 × 10− 4 M). [64Cu]Cu-DOTA-xPy (x = 2–4) exhibited good stability in human serum up to 24 h. When challenged with 1000 eq. of NOTA, no transmetallation was observed for all three 64Cu complexes. DOTA-xPy (x = 1–3) were conjugated to a cyclized α-melanocyte-stimulating hormone (αMSH) peptide by using one of the pendant carboxyl groups as a bifunctional handle. [64Cu]Cu-DOTA-xPy-αMSH retained good serum stability (> 96% in 24 h) and showed high binding affinity (Ki = 2.1–3.7 nM) towards the melanocortin 1 receptor. Conclusion DOTA-xPy (x = 1–3) are promising chelators for 64Cu. Further in vivo evaluation is necessary to assess the full potential of these chelators as a tool to enable further theranostic radiopharmaceutical development.


Sign in / Sign up

Export Citation Format

Share Document