scholarly journals Polymorphisms of shadow of prion protein gene (SPRN) in Korean native cattle (Hanwoo) and Holstein cattle

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yong-Chan Kim ◽  
Seon-Kwan Kim ◽  
Sae-Young Won ◽  
Byung-Hoon Jeong

Abstract Bovine spongiform encephalopathy (BSE) is a fatal infectious neurodegenerative disease caused by the accumulation of pathogenic prion protein (PrPSc) in the central nervous system (CNS), particularly in the brain. In a recent study, the shadow of prion protein (Sho), encoded by the shadow of prion protein (SPRN) gene, accelerates the progression of prion diseases, and a 12-bp insertion/deletion polymorphism in the coding region of the SPRN gene is associated with susceptibility to atypical BSE-affected Polish cattle. To date, the genetic study of the SPRN gene in Korean cattle has not been performed. In this study, we investigated the genotype and allele frequencies of SPRN polymorphisms in 235 Hanwoo and 212 Holstein cattle and analyzed the linkage disequilibrium (LD) and haplotypes of SPRN polymorphisms. In addition, we compared the distribution of the 12-bp insertion/deletion polymorphism between atypical BSE-diagnosed Polish cattle and Korean cattle to evaluate the susceptibility of atypical BSE. Furthermore, we estimated a deleterious effect of polymorphisms on the Sho protein using PROVEAN. We found a total of seven polymorphisms, including one novel single nucleotide polymorphism (SNP), c.231G>A. We also found significantly different distributions of genotype, allele and haplotype frequencies of seven polymorphisms between Hanwoo and Korean Holstein cattle. In addition, all polymorphisms showed strong LDs among the seven polymorphisms. Interestingly, Hanwoo cattle showed more potential susceptible distribution in the genotype and allele frequencies of the 12-bp insertion/deletion polymorphisms of the SPRN gene than Holstein cattle. Finally, using PROVEAN, we found one novel deleterious nonsynonymous SNP to Sho protein, c.110G>C (G37A). To the best of our knowledge, this is the first study of the SPRN gene in Korean cattle.

2019 ◽  
Vol 53 (1) ◽  
pp. 117-147 ◽  
Author(s):  
Simon Mead ◽  
Sarah Lloyd ◽  
John Collinge

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene ( PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non- PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.


2017 ◽  
Vol 65 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Yong-Chan Kim ◽  
Byung-Hoon Jeong

Bovine prion diseases are composed of two types of bovine spongiform encephalopathy (BSE), classical BSE and atypical BSE. Recent studies have identified one case of atypical BSE with an E211K mutation. E211K is homologous to the human E200K mutation, which is related to familial Creutzfeldt-Jakob disease (CJD), one of the familial forms of human prion diseases. To date, familial forms of prion diseases have not been reported in non-human animals. Because the familial forms of human prion diseases account for more than 10% of all human prion disease cases, the detection of the E211K mutation in healthy cattle is very important for verifying the role of this mutation as a familial form of BSE. To detect putative mutations related to familial BSE, specifically E211K in Korean native cattle (Hanwoo) and Korean dairy cattle (Holstein), we performed direct sequencing targeting codon 211 and the adjacent regions of the bovine prion protein (PRNP) gene in 384 Hanwoo and 152 Holstein cattle. We did not find the E211K mutation in any of the Korean cattle. Although we did not find the E211K mutation in Korean native cattle, E211K is a postulated mutation; therefore, further screening in other countries and larger samples is highly desirable.


2018 ◽  
Vol 182 (25) ◽  
pp. 717-717 ◽  
Author(s):  
Yong-Chan Kim ◽  
Byung-Hoon Jeong

Prion diseases are caused by structural changes in normal prion protein (PrPC). The prion gene family includes four members: prion protein (PRNP), prion-like protein (PRND), shadow of PRNP (SPRN) and prion-related protein (PRNT). Genetic association studies of prion diseases and the other genes in the prion gene family, except for PRNT, have been performed in cattle. Our previous studies indicated that the distribution of PRNP promoter polymorphisms related with bovine spongiform encephalopathy susceptibility is significantly different in Hanwoo (Korean native cattle) and Holstein cattle. However, PRNT polymorphisms have not been reported thus far in cattle. Hence, we examined the PRNT single nucleotide polymorphisms (SNPs) in 315 Hanwoo and 140 Holstein cattle. We found a total of two SNPs, PRNT c.-87C>T and PRNT c.-37G>C, in the 5’ untranslated region of exon 2. The c.-87C>T and c.-37G>C genotype (P<0.0001) and allele (P<0.0001) frequencies exhibited significant differences in the distribution between Hanwoo and Holstein cattle. In addition, the c.-37G<C polymorphism was not found in Hanwoo. Interestingly, we did not find any polymorphisms in the ORF of bovine PRNT, which is in contrast with the highly polymorphic ovine PRNT ORF region. This is the first genetic research of the PRNT gene in cattle.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Allison Kraus ◽  
Gregory J. Raymond ◽  
Brent Race ◽  
Katrina J. Campbell ◽  
Andrew G. Hughson ◽  
...  

ABSTRACT Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro, only some are transmissible and pathogenic in vivo. To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro. Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids. IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood. Here we have compared the combined effects of prion seeding and mutations of prion protein (PrP) on the structure and transmission properties of synthetic PrP aggregates. Our results highlight the influence of specific sequence features in the normally unstructured region of PrP that influence the infectious and neuropathogenic properties of PrP-derived aggregates.


Author(s):  
Patrick JM Urwin ◽  
Anna M Molesworth

Human prion diseases comprise a number of rare and fatal neurodegenerative conditions that result from the accumulation in the central nervous system of an abnormal form of a naturally occurring protein, called the prion protein. The diseases occur in genetic, sporadic, and acquired forms: genetic disease is associated with mutations in the prion protein gene (PRNP); sporadic disease is thought to result from a spontaneous protein misfolding event; acquired disease results from transmission of infection from an animal or another human. The potential transmissibility of the prion in any of these forms, either in disease states or during the incubation period, has implications for public health. Here we focus on Creutzfeldt-Jakob Disease (CJD), including variant Creutzfeldt-Jakob Disease (vCJD), although we will also discuss other forms of human prion disease.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong-Chan Kim ◽  
Seon-Kwan Kim ◽  
Byung-Hoon Jeong

Abstract Prion diseases in sheep and goats are called scrapie and belong to a group of transmissible spongiform encephalopathies (TSEs) caused by the abnormal misfolding of the prion protein encoded by the prion protein gene (PRNP). The shadow of the prion protein gene (SPRN) is the only prion gene family member that shows a protein expression profile similar to that of the PRNP gene in the central nervous system. In addition, genetic susceptibility of the SPRN gene has been reported in variant Creutzfeldt–Jakob disease (CJD), bovine spongiform encephalopathy (BSE) and scrapie. However, genetic studies of the SPRN gene have not been carried out in Korean native black goats. Here, we investigated the genotype and allele frequencies of SPRN polymorphisms in 213 Korean native black goats and compared these polymorphisms with those previously reported for scrapie-affected animals. We found a total of 6 polymorphisms including 1 nonsynonymous single nucleotide polymorphism (SNP) and 1 synonymous SNP in the open reading frame (ORF) region and 3 SNPs and 1 indel polymorphism (c.495_496insCTCCC) in the 3′ untranslated region (UTR) by direct DNA sequencing. A significant difference in the allele frequency of the c.495_496insCTCCC indel polymorphism was found between the Italian scrapie-affected goats and the Korean native black goats (P < 0.001). Furthermore, there was a significant difference in the allele frequencies of the c.495_496insCTCCC indel polymorphism between Italian healthy goats and Korean native black goats (P < 0.001). To evaluate the biological impact of the novel nonsynonymous SNP c.416G > A (Arg139Gln), we carried out PROVEAN analysis. PROVEAN predicted the SNP as ‘Neutral’ with a score of −0.297. To the best of our knowledge, this is the first genetic study of the SPRN gene in Korean native black goats.


2016 ◽  
Vol 90 (23) ◽  
pp. 10752-10761 ◽  
Author(s):  
Kristen A. Davenport ◽  
Davin M. Henderson ◽  
Candace K. Mathiason ◽  
Edward A. Hoover

ABSTRACT Chronic wasting disease (CWD) in cervids and bovine spongiform encephalopathy (BSE) in cattle are prion diseases that are caused by the same protein-misfolding mechanism, but they appear to pose different risks to humans. We are interested in understanding the differences between the species barriers of CWD and BSE. We used real-time, quaking-induced conversion (RT-QuIC) to model the central molecular event in prion disease, the templated misfolding of the normal prion protein, PrP c , to a pathogenic, amyloid isoform, scrapie prion protein, PrP Sc . We examined the role of the PrP c amino-terminal domain (N-terminal domain [NTD], amino acids [aa] 23 to 90) in cross-species conversion by comparing the conversion efficiency of various prion seeds in either full-length (aa 23 to 231) or truncated (aa 90 to 231) PrP c . We demonstrate that the presence of white-tailed deer and bovine NTDs hindered seeded conversion of PrP c , but human and bank vole NTDs did the opposite. Additionally, full-length human and bank vole PrP c s were more likely to be converted to amyloid by CWD prions than were their truncated forms. A chimera with replacement of the human NTD by the bovine NTD resembled human PrP c . The requirement for an NTD, but not for the specific human sequence, suggests that the NTD interacts with other regions of the human PrP c to increase promiscuity. These data contribute to the evidence that, in addition to primary sequence, prion species barriers are controlled by interactions of the substrate NTD with the rest of the substrate PrP c molecule. IMPORTANCE We demonstrate that the amino-terminal domain of the normal prion protein, PrP c , hinders seeded conversion of bovine and white-tailed deer PrP c s to the prion forms, but it facilitates conversion of the human and bank vole PrP c s to the prion forms. Additionally, we demonstrate that the amino-terminal domain of human and bank vole PrP c s requires interaction with the rest of the molecule to facilitate conversion by CWD prions. These data suggest that interactions of the amino-terminal domain with the rest of the PrP c molecule play an important role in the susceptibility of humans to CWD prions.


2019 ◽  
Vol 67 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Min-Ju Jeong ◽  
Byung-Hoon Jeong

Prion diseases are fatal neurodegenerative diseases characterised by the accumulation of an abnormal prion protein isoform (PrPSc), which is converted from the normal prion protein (PrPC). Prion diseases have been reported in an extensive number of species but not in horses up to now; therefore, horses are known to be a species resistant to prion diseases. The prion-like protein gene (PRND) is closely located downstream of the prion protein gene (PRNP) and the prion-like protein (Doppel) is a homologue with PrP. Previous studies have shown that an association between prion diseases and polymorphisms of the PRND gene is reported in the main hosts of prion diseases. Hence, we examined the genetic variations of the PRND gene in Thoroughbred horses. Interestingly, polymorphisms of the PRND gene were not detected. In addition, we conducted a comparative analysis of the amino acid sequences of the PRND gene to identify the differences between horses and other species. The amino acid sequence of the horse PRND gene showed the highest identity to that of sheep (83.7%), followed by that of goats, cattle and humans. To the best of our knowledge, this is the first genetic study of the PRND gene in horses.


2020 ◽  
Vol 21 (17) ◽  
pp. 6233
Author(s):  
Hideyuki Hara ◽  
Suehiro Sakaguchi

The normal cellular isoform of prion protein, designated PrPC, is constitutively converted to the abnormally folded, amyloidogenic isoform, PrPSc, in prion diseases, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. PrPC is a membrane glycoprotein consisting of the non-structural N-terminal domain and the globular C-terminal domain. During conversion of PrPC to PrPSc, its 2/3 C-terminal region undergoes marked structural changes, forming a protease-resistant structure. In contrast, the N-terminal region remains protease-sensitive in PrPSc. Reverse genetic studies using reconstituted PrPC-knockout mice with various mutant PrP molecules have revealed that the N-terminal domain has an important role in the normal function of PrPC and the conversion of PrPC to PrPSc. The N-terminal domain includes various characteristic regions, such as the positively charged residue-rich polybasic region, the octapeptide repeat (OR) region consisting of five repeats of an octapeptide sequence, and the post-OR region with another positively charged residue-rich polybasic region followed by a stretch of hydrophobic residues. We discuss the normal functions of PrPC, the conversion of PrPC to PrPSc, and the neurotoxicity of PrPSc by focusing on the roles of the N-terminal regions in these topics.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Sílvia Sisó ◽  
Lorenzo González ◽  
Martin Jeffrey

Prion disorders are infectious, neurodegenerative diseases that affect humans and animals. Susceptibility to some prion diseases such as kuru or the new variant of Creutzfeldt-Jakob disease in humans and scrapie in sheep and goats is influenced by polymorphisms of the coding region of the prion protein gene, while other prion disorders such as fatal familial insomnia, familial Creutzfeldt-Jakob disease, or Gerstmann-Straussler-Scheinker disease in humans have an underlying inherited genetic basis. Several prion strains have been demonstrated experimentally in rodents and sheep. The progression and pathogenesis of disease is influenced by both genetic differences in the prion protein and prion strain. Some prion diseases only affect the central nervous system whereas others involve the peripheral organs prior to neuroinvasion. Many experiments undertaken in different species and using different prion strains have postulated common pathways of neuroinvasion. It is suggested that prions access the autonomic nerves innervating peripheral organs and tissues to finally reach the central nervous system. We review here published data supporting this view and additional data suggesting that neuroinvasion may concurrently or independently involve the blood vascular system.


Sign in / Sign up

Export Citation Format

Share Document