Reducing soil erosion and the loss of soil fertility for environmentally-sustainable agricultural cropping and livestock production systems

2005 ◽  
Vol 146 (2) ◽  
pp. 137-146 ◽  
Author(s):  
R EVANS
EDIS ◽  
2013 ◽  
Vol 2013 (2) ◽  
Author(s):  
Maria L. Silveira ◽  
Joao M. Vendramini ◽  
Hiran M. Da Silva ◽  
Mariana Azenha

Many forage-based livestock production systems in Florida are characterized by extensive grazing with minimal inputs of commercial fertilizer and supplemental feed. In these systems, adequate soil fertility conditions are essential to sustain forage production. If nutrients become deficient, pasture and animal performance is reduced, and the economic returns of livestock operations may decline. This 3-page fact sheet discusses the different nutrient pathways in grazing pastures to help producers better understand how to promote nutrient cycling and pasture sustainability. Written by Maria L. Silveira, Joao M. B. Vendramini, Hiran M. da Silva, and Mariana Azenha, and published by the UF Department of Soil and Water Science, January 2013.  http://edis.ifas.ufl.edu/ss578 


2013 ◽  
Vol 64 (6) ◽  
pp. 615 ◽  
Author(s):  
Afshin Ghahramani ◽  
Andrew D. Moore

Climate change is predicted to cause a significant reduction in the productivity of grasslands and the livestock industry across southern Australia. We have used the GRAZPLAN biophysical simulation models to assess a range of pasture management practices as adaptation options under the SRES A2 global change scenario. The modelling analysis spanned four dimensions: space (25 representative locations), time (2030, 2050, 2070, and a historical reference period of 1970–99), livestock enterprises (five), and management (four adaptation options at different levels). Climate projection uncertainty was taken into account by considering climates from four global climate models. The effectiveness of adaptation options varied widely among enterprises and locations, over time, and under the four projected future climates. Increased soil fertility by adding phosphorus and addition of an area of lucerne to the feed-base were predicted to have the greatest effect in recovering from the negative impact of climate change on profitability. In high-rainfall zones in particular, and compared with the historical period, the most profitable option could return the profitability of livestock production systems to historical levels at 68%, 52%, and 32% of the representative locations at 2030, 2050, and 2070, respectively. At 2030, increased soil fertility, adding lucerne to the feed-base, and confinement feeding in summer recovered overall profit fully at 52%, 28%, and 12% of locations. Removing annual legumes in an attempt to preserve ground cover was ineffective as an adaptation to changing climate. For the majority of location × livestock enterprise combinations, there was at least one individual incremental adaptation that could recover the declines in the profitability at 2030, but effectiveness decreased over time after 2030. It is unlikely that the examined single climate change adaptations to the feed-base of southern Australian livestock production systems can return them to profitability in the second half of the century.


2008 ◽  
Vol 42 ◽  
pp. 71-85 ◽  
Author(s):  
J.A. Woolliams ◽  
O. Matika ◽  
J. Pattison

SummaryLivestock production faces major challenges through the coincidence of major drivers of change, some with conflicting directions. These are:1. An unprecedented global change in demands for traditional livestock products such as meat, milk and eggs.2. Large changes in the demographic and regional distribution of these demands.3. The need to reduce poverty in rural communities by providing sustainable livelihoods.4. The possible emergence of new agricultural outputs such as bio-fuels making a significant impact upon traditional production systems.5. A growing awareness of the need to reduce the environmental impact of livestock production.6. The uncertainty in the scale and impact of climate change. This paper explores these challenges from a scientific perspective in the face of the large-scale and selective erosion of our animal genetic resources, and concludes thai there is a stronger and more urgent need than ever before to secure the livestock genetic resources available to humankind through a comprehensive global conservation programme.


2017 ◽  
Vol 6 (2) ◽  
pp. 66 ◽  
Author(s):  
Maria Storrle ◽  
Hans-Jorg Brauckmann ◽  
Gabriele Broll

This study investigates the amounts of greenhouse gas (GHG) emissions due to manure handling within different livestock production systems in Tyumen oblast of Western Siberia. Tyumen oblast occupies approx. 160 000 km² of Asian taiga and forest steppe. The amount of GHGs from manure was calculated as a function of the handling according to current IPCC guidelines for ecozones and livestock production systems. The entire Tyumen oblast has annual 7 400 t methane emissions and 440 t nitrous oxide emissions from manure. Three livestock production systems are prevalent in Tyumen oblast: Mega farms, small farms and peasant farms. The share of mega farms is 81 % (171 kt CO2 eq). Additionally, the slurry system in mega farms causes environmental pollution. GHG emissions and environmental pollution could be reduced by implementing solid manure systems or pasturing, by installing storage facilities for slurry outside the stables and through application of the manure as fertiliser at mega farms. In small farms solid manure systems and a small stocking density of livestock lead to smallest GHG emissions (1 %, 3 kt CO2 eq) from manure. In peasant farming 18 % (38 kt CO2 eq) of GHGs are emitted due to pasturing. 


Geoderma ◽  
2021 ◽  
Vol 385 ◽  
pp. 114899
Author(s):  
Ya'nan Fan ◽  
Yanxia Zhang ◽  
Zhikun Chen ◽  
Xinkai Wang ◽  
Biao Huang

2005 ◽  
Vol 34 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Alfred E. Hartemink

Plantation agriculture is more than 400 years old and contributes to the regional and national economies in many tropical countries. This paper reviews some of the main environmental issues related to plantation agriculture with perennial crops, including soil erosion, soil fertility decline, pollution, carbon sequestration and biodiversity. Soil erosion and soil fertility decline are of concern in some areas, but in most plantations these are being checked by cover crops and inorganic fertilizer applications. Few studies have been conducted on the issue of carbon sequestration under perennial plantation cropping. Reductions in deforestation yield much greater benefits for a reduction in CO2 emissions than expanding plantation agriculture. The biggest threat to biodiversity is the loss of habitat through expansion of the plantation area. Despite the environmental problems and concerns, this review has shown that crop yields of most perennial crops have increased over time due to improved crop husbandry including high-yielding cultivars and improved soil management. It is likely that more attention will be given to the environmental aspects of plantation cropping due to the increasing environmental awareness in tropical countries.


Sign in / Sign up

Export Citation Format

Share Document