Can Growth Form Classification Predict Litter Nutrient Dynamics and Decomposition Rates in Lowland Wet Forest?

Biotropica ◽  
2009 ◽  
Vol 42 (1) ◽  
pp. 72-79 ◽  
Author(s):  
Louis S. Santiago
1995 ◽  
Vol 25 (7) ◽  
pp. 1049-1057 ◽  
Author(s):  
Robert L. Edmonds ◽  
Ted B. Thomas

Decomposition rates and nutrient dynamics (for N, P, K, Ca, Mg, Mn, and Na) were determined for green needles of western hemlock (Tsugaheterophylla (Raf.) Sarg.) and Pacific silver fir (Abiesamabilis (Dougl.) Forb.) in an old-growth forested watershed (58 ha West Twin Creek) in the Hoh River valley, Olympic National Park, Washington. The influence of temperature and substrate chemistry on decomposition was determined. Temperature was the dominant factor controlling decomposition rates in the first year in this watershed, with the fastest decomposition at an elevation of 275 m (lower watershed) and the slowest decomposition at 725 m (upper watershed). After 12 months mass loss averaged 36% in the lower watershed and 28% in the upper watershed. There was no significant difference in decomposition rates between species. Substrate chemistry, i.e., the lignin/N ratio, became a more important factor than temperature as decomposition proceeded. After 37 months mass loss for needles averaged 61% for western hemlock and 50% for Pacific silver fir, with no difference by watershed location. After 61 months both types of substrates appeared to be approaching similar substrate chemistry and similar decomposition rates and there were no significant differences by species or watershed location. Decomposition constants (k values) after 61 months were 0.26 and 0.20 year−1 for western hemlock needles in the lower and upper watershed, respectively, and 0.22 and 0.19 year−1 for Pacific silver fir needles in the lower and upper watershed, respectively. Nitrogen was immobilized during the first 12 months of decomposition in needles of both species and then released. No other elements were immobilized during the initial (0- to 12-month) decomposition period, except for Ca in Pacific silver fir needles. However, in the 37- to 61-month period there was a considerable immobilization of Mg and Na in both species in the upper and lower watershed and K and Mn in both species in the upper watershed.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Thomas Okoh ◽  
Esther Edu

Abstract Background Nutrient release during litter decomposition was investigated in Vitex doniana, Terminalia avecinioides, Sarcocephallus latifolius, and Parinari curatellifolius in Makurdi, Benue State Nigeria (January 10 to March 10 and from June 10 to August 10, 2016). Leaf decomposition was measured as loss in mass of litter over time using the decay model Wt/W0 = e−kd t, while $$ \mathrm{Kd}=-\frac{1}{t} In\left(\frac{Wt}{W0}\right) $$Kd=−1tInWtW0 was used to evaluate decomposition rate. Time taken for half of litter to decompose was measured using T50 = ln 2/k; while nutrient accumulation index was evaluated as NAI =$$ \left(\frac{\omega t\ Xt}{\omega \mathrm{o}X\mathrm{o}}\right). $$ωtXtωoXo. Results Average mass of litter remaining after exposure ranged from 96.15 g, (V. doniana) to 78.11 g, (S. lafolius) in dry (November to March) and wet (April to October) seasons. Decomposition rate was averagely faster in the wet season (0.0030) than in the dry season (0.0022) with P. curatellifolius (0.0028) and T. avecinioides (0.0039) having the fastest decomposition rates in dry and wet seasons. Mean residence time (days) ranged from 929 to 356, while the time (days) for half the original mass to decompose ranged from 622 to 201 (dry and wet seasons). ANOVA revealed highly significant differences (p < 0.01) in decomposition rates and exposure time (days) and a significant interaction (p < 0.05) between species and exposure time in both seasons. Conclusion Slow decomposition in the plant leaves implied carbon retention in the ecosystem and slow release of CO2 back to the atmosphere, while nitrogen was mineralized in both seasons. The plants therefore showed effectiveness in nutrient cycling and support productivity in the ecosystem.


1992 ◽  
Vol 22 (3) ◽  
pp. 306-314 ◽  
Author(s):  
Stephen C. Hart ◽  
Mary K. Firestone ◽  
Eldor A. Paul

A litter-bag technique was used to measure decay rates and assess changes in organic and inorganic constituents of ponderosa pine (Pinusponderosa Laws.) needle litter during decomposition over a 2-year period in old- and young-growth forests in the Sierra Nevada of California. Rates of mass loss were among the lowest reported for temperate and boreal forests, with annual decomposition constants of about 0.08 and 0.18 year−1 for the old- and young-growth forests, respectively. Apparently, the temporal separation of warm temperatures and moist conditions found in Mediterranean-type climates severely limits decomposition in these coniferous forests. In the old-growth forest, comparison of estimates of tree nutrient uptake with net releases of nutrients from fine litter during their 1st year of decomposition suggests that recent litter fall potentially acts as a significant source of P, Mg, and K for tree uptake in this forest; in contrast, recently fallen litter acts as a net sink for N, S, and Ca. Despite initially lower indices of litter quality for litter originating from the old–growth relative to the young–growth forest, no significant difference in decomposition rates of these two litter age-classes was found when placed at either site. This result does not support the hypothesis that decreases in decomposition rates during forest development are driven by decreases in the quality of litter fall.


1987 ◽  
Vol 17 (6) ◽  
pp. 499-509 ◽  
Author(s):  
Robert L. Edmonds

Decomposition rates and nutrient dynamics in small-diameter woody litter (twigs, cones, and branches) were studied in four ecosystems in western Washington: high elevation Pacific silver fir (Abiesamabilis (Dougl.) Forbes) and low elevation Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco), western hemlock (Tsugaheterophylla (Raf.) Sarg.), and red alder (Alnusrubra Bong.). Conifer twigs decomposed faster (k = 0.14–0.24 year−1) than cones (k = 0.09–0.12 year−1) and branches (k = 0.03–0.11 year−1). Decomposition constants were related better to initial lignin/initial N ratios (r = −0.64) than initial lignin concentrations. N was generally the least mobile nutrient while K was the most mobile. Many nutrients were strongly immobilized in conifer fine woody litter, including N, Mg, Mn, and Ca. There was little immobilization of N in red alder branches. N release from decomposing woody litter appears to be controlled by a critical C/N ratio. This critical C/N ratio, however, was not constant and increased as the substrate decomposition rate increased.


2016 ◽  
Vol 6 (3) ◽  
pp. 106
Author(s):  
Amanda M. Nelson ◽  
Jon E. Schoonover ◽  
Karl W. J. Williard

<p class="1Body">Leaf litter quality and quantity can influence soil nutrient dynamics and stream productivity through decomposition and serving as allochthonous stream inputs. Leaf deposition, nitrogen (N)-resorption efficiency and proficiency, and decomposition rates were analyzed in riparian stands of <em>Arundinaria gigantea </em>(Walt.) Muhl.<em> </em>in southern Illinois for the first time to determine potential nutrient cycling from riparian canebrake restoration. Leaf litter was collected from five established canebrakes monthly over one year and a decomposition study was conducted over 72 weeks. Live leaves, freshly senesced leaves, and decomposed leaves were analyzed for carbon (C) and N content. Leaf litterfall biomass peaked in November at twice the monthly average for all but one site, indicating a resemblance to deciduous leaf fall patterns. Nitrogen and C concentrations decreased 48% and 30%, respectively, between live leaves and 72 weeks following decomposition. High soil moisture appeared to slow decomposition rates, perhaps due to the creation of anaerobic conditions. Cane leaves have low resorption proficiency and nutrient-use proficiency, suggesting that these riparian canebrakes are not N limited. Giant cane should be considered in multispecies riparian buffer creation since it has this potential to supply carbon and nitrogen to the soil and to macroinvertebrates in the streams for a longer period of time and year round.</p>


2018 ◽  
Vol 27 (3) ◽  
pp. 549-558 ◽  
Author(s):  
Oscar Lanuza ◽  
Fernando Casanoves ◽  
Diego Delgado ◽  
Karel Van den Meersche

1992 ◽  
Vol 22 (2) ◽  
pp. 161-166 ◽  
Author(s):  
T.D. Schowalter

Decomposition of oak (Quercus spp.) logs (25–35 cm diameter, 3 m long) was compared among log substrates in Oregon, Minnesota, Kansas, and North Carolina during the first 2 years on the ground. Decomposition rates (k) for integrated logs averaged 0.28 ± 0.04 year−1 (mean ± 1 SD)) during this initial period. Decomposition reflected qualitative differences among log substrates (outer and inner bark, sapwood and heartwood). Inner bark had the highest nutritional quality and was the focus of insect and microbial activity during this early stage of decomposition; only 20% of initial mass remained after 2 years (k = 0.59 ± 0.15 year−1). Sapwood decayed more slowly than heartwood, with an overall decay rate of 0.20 ± 0.15 year−1). Heartwood lost 50% of its mass during the 1st year, but showed no further loss during the 2nd year, for an overall decay rate of 0.31 ± 0.05 year−1. Nutrient content generally declined during decomposition, but P accumulated in heartwood and Na accumulated in sapwood and heartwood during the 2nd year. Results indicate that decomposition of whole logs integrates different decomposition rates and lag times (i.e., time prior to initiation of decomposition) among log substrates varying in qualitative factors. Multiple-exponential models may be necessary to predict rates and sources of carbon and nutrient release to the atmosphere and soil.


Sign in / Sign up

Export Citation Format

Share Document