Sequence Information on Simple Sequence Repeats and Single Nucleotide Polymorphisms through Transcriptome Analysis of Mungbean

2011 ◽  
Vol 53 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Kyaw Thu Moe ◽  
Jong-Wook Chung ◽  
Young-Il Cho ◽  
Jung-Kyung Moon ◽  
Ja-Hwan Ku ◽  
...  
2005 ◽  
Vol 130 (6) ◽  
pp. 912-917 ◽  
Author(s):  
Jernej Jakse ◽  
William Martin ◽  
John McCallum ◽  
Michael J. Havey

The commercial production of onion (Allium cepa L.) inbreds, hybrids, and open-pollinated (OP) cultivars would benefit from a robust set of molecular markers that confidently distinguish among elite germplasms. Large-scale DNA sequencing has revealed that single nucleotide polymorphisms (SNPs), short insertion-deletion (indel) events, and simple sequence repeats (SSRs) are relatively abundant classes of codominant DNA markers. We identified 398 SNPs, indels, and SSRs among 35 elite onion ulations and observed that all populations could be distinguished. Phylogenetic analyses of simple-matching and Jaccard's coefficients for SSRs produced essentially identical trees and relationships were consistent with known pedigrees and previous marker evaluations. The SSRs revealed that elite germplasms from specific companies or breeding programs were often closely related. In contrast, phylogenetic analyses of SNPs and indels did not reveal clear relationships among elite onion populations and there was no agreement among trees generated using SNPs and indels vs. SSRs. This discrepancy was likely due to SNPs and indels occurring among amplicons from duplicated regions (paralogs) of the onion genome. Nevertheless, these PCR-based markers will be useful in the quality control of inbred, hybrid, and OP onion seed lots.


2015 ◽  
Vol 195 ◽  
pp. 124-137 ◽  
Author(s):  
Chandrika Ramadugu ◽  
Manjunath L. Keremane ◽  
Xulan Hu ◽  
David Karp ◽  
Claire T. Federici ◽  
...  

2008 ◽  
Vol 133 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Anil Khar ◽  
Jernej Jakse ◽  
Michael J. Havey

Onion (Allium cepa L.) bulb color is controlled by at least five major loci (I, C, G, L, and R) and seedcoat color by one locus (B). The authors developed families segregating for bulb and seedcoat colors, simple sequence repeats (SSRs), and single nucleotide polymorphisms (SNPs) in genomic amplicons of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). The B and C loci were linked to SSRs on chromosomes 1 and 6 respectively. For all of three families, SNPs in DFR cosegregated with the R locus conditioning red bulb color. In the family from B2246 × B11159, red bulbs versus yellow bulbs were controlled by DFR and a locus (L2) linked at 6.3 cM to ANS. The authors propose that yellow bulb onions have been independently selected numerous times and that yellow populations carry independent mutations in structural or regulatory genes controlling the production of red bulb color in onion.


Parasitology ◽  
2010 ◽  
Vol 137 (12) ◽  
pp. 1721-1730 ◽  
Author(s):  
BHAVNA GUPTA ◽  
ADITYA P. DASH ◽  
NALINI SHRIVASTAVA ◽  
APARUP DAS

SUMMARYWith a view to developing putatively neutral markers based on Single Nucleotide Polymorphisms (SNPs) in the human malaria parasite, Plasmodium vivax, we utilized the published whole genome sequence information of P. falciparum and P. vivax to find a ~200 kb conserved syntenic region between these two species. We have selected 27 non-coding DNA fragments (in introns and intergenic regions) of variable length (300–750 bp) in P. vivax in this syntenic region. PCR of P. vivax isolates of a population sample from India could successfully amplify 17 fragments. Subsequently, DNA sequencing and sequence analysis confirmed the polymorphic status of only 11 fragments. Altogether, 18 SNPs were detected and 2 different measures of nucleotide diversity showed variable patterns across different fragments; in general, introns were less variable than the intergenic regions. All 11 polymorphic fragments were found to be evolving according to a neutral equilibrium model and thus could be utilized as putatively neutral markers for population genetic studies in P. vivax. Different molecular population genetics parameters were also estimated, providing initial insight into the population genetics of Indian P. vivax.


Sign in / Sign up

Export Citation Format

Share Document