A Constant Velocity Impact Tester for Brittle Material

1979 ◽  
Vol 4 (1) ◽  
pp. 3-4
Author(s):  
R.M. Fredriks
2006 ◽  
Vol 20 (25n27) ◽  
pp. 4384-4389 ◽  
Author(s):  
KI-WEON KANG ◽  
JUNG-KYU KIM ◽  
SEONG-KYUN CHEONG ◽  
HEUNG-SEOB KIM

The goals are to identify the strength reduction behavior and its statistical properties of sandwich structure subjected to low velocity impact. For these, the impact tests were performed using the impact tester and the damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading for the impacted structures. The strength reduction behavior is evaluated via the residual strength prediction model. Also, a statistical model is developed to identify the fluctuation of residual strength. The model well describes the distribution of residual strength.


1965 ◽  
Vol 32 (2) ◽  
pp. 378-382 ◽  
Author(s):  
O. W. Dillon

Analytical solutions of three problems in coupled thermoelasticity are presented for the case when the material coupling parameter equals unity. The problems considered are: (a) Danilovskaya’s problem of a step function in temperature at the surface; (b) a step function in surface strain; and (c) constant velocity impact. Solutions are presented for the case of thin bars (one-dimensional stress) and are obtained by the Laplace-transform technique. There is great simplification in the equations when the material coupling parameter equals unity which permits the straightforward inversion of the transformed solutions. The results demonstrate significant deviations from the corresponding uncoupled solutions.


1956 ◽  
Vol 23 (2) ◽  
pp. 239-243
Author(s):  
M. F. Conroy

Abstract The object of this paper is to consider the plastic deformation of semi-infinite beams subject to dynamic transverse loading at the free end. The type of loading considered is that of a constant bending moment, together with a transverse force the magnitude of which is inversely proportional to the square root of time. Part 1 of the paper consists of a plastic-rigid analysis of the problem, based on the plastic-rigid analysis of infinite beams under transverse, constant velocity, impact loading developed by the author. Part 2 of the paper consists of an elastic-plastic solution of the problem, based on a theoretical analysis of the plastic deformation of infinite beams subject to transverse, constant-velocity impact loading developed by H. F. Bohnenblust. Specific problems are considered for which the deflection solutions obtained by elastic ideally plastic and rigid ideally plastic analyses are compared.


Author(s):  
M.D. Coutts ◽  
E.R. Levin ◽  
J.G. Woodward

While record grooves have been studied by transmission electron microscopy with replica techniques, and by optical microscopy, the former are cumbersome and restricted and the latter limited by lack of depth of focus and resolution at higher magnification. With its great depth of focus and ease in specimen manipulation, the scanning electron microscope is admirably suited for record wear studies.A special RCA sweep frequency test record was used with both lateral and vertical modulation bands. The signal is a repetitive, constant-velocity sweep from 2 to 20 kHz having a duration and repetitive rate of approximately 0.1 sec. and a peak velocity of 5.5 cm/s.A series of different pickups and numbers of plays were used on vinyl records. One centimeter discs were then cut out, mounted and coated with 200 Å of gold to prevent charging during examination. Wear studies were made by taking micrographs of record grooves having 1, 10 and 50 plays with each stylus and comparing with typical “no-play” grooves. Fig. 1 shows unplayed grooves in a vinyl pressing with sweep-frequency modulation in the lateral mode.


Sign in / Sign up

Export Citation Format

Share Document