NON DESTRUCTIVE EVALUATION OF RESIDUAL STRESSES IN WELDED PLATES USING THE BARKHAUSEN NOISE TECHNIQUE

2005 ◽  
Vol 29 (5) ◽  
pp. 17-21 ◽  
Author(s):  
K. Kesavan ◽  
K. Ravisankar ◽  
S. Parivallal ◽  
P. Sreeshylam
2017 ◽  
Vol 68 (5) ◽  
pp. 384-389
Author(s):  
Jozef Pal’a ◽  
Vladimír Jančárik

Abstract The magnetic Barkhausen noise (MBN) measurement method is a widely used non-destructive evaluation technique used for inspection of ferromagnetic materials. Besides other influences, the excitation yoke lift-off is a significant issue of this method deteriorating the measurement accuracy. In this paper, the lift-off effect is analysed mainly on grain oriented Fe-3%Si steel subjected to various heat treatment conditions. Based on investigation of relationship between the amplitude distribution of MBN and lift-off, an approach to suppress the lift-off effect is proposed. Proposed approach utilizes the digital feedback optimising the measurement based on the amplitude distribution of MBN. The results demonstrated that the approach can highly suppress the lift-off effect up to 2 mm.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1029 ◽  
Author(s):  
Miroslav Neslušan ◽  
Libor Trško ◽  
Peter Minárik ◽  
Jiří Čapek ◽  
Jozef Bronček ◽  
...  

This paper reports about the non-destructive evaluation of surfaces after severe shot peening via the Barkhausen noise technique. Residuals stresses and the corresponding Almen intensity, as well as microstructure alterations, are correlated with the Barkhausen noise signal and its extracted features. It was found that residual stresses as well as the Barkhausen noise exhibit a valuable anisotropy. For this reason, the relationship between the Barkhausen noise and stress state is more complicated. On the other hand, the near-the-surface layer exhibits a remarkable deformation induced softening, expressed in terms of the microhardness and the corresponding crystalline size. Such an effect explains the progressive increase of the Barkhausen noise emission along with the shot-peening time. Therefore, the Barkhausen noise can be considered as a promising technique capable of distinguishing between the variable regimes of severe shoot peening.


2014 ◽  
Vol 63 ◽  
pp. 7-10 ◽  
Author(s):  
M. Rabung ◽  
I. Altpeter ◽  
C. Boller ◽  
G. Dobmann ◽  
H.G. Herrmann

2005 ◽  
Vol 19 (10) ◽  
pp. 783-790 ◽  
Author(s):  
T Ghidini ◽  
T Vugrin ◽  
C Dalle Donne

2021 ◽  
Vol 63 (7) ◽  
pp. 427-435
Author(s):  
Junyang Tan ◽  
Dan Xia ◽  
Shiyun Dong ◽  
Honghao Zhu ◽  
Binshi Xu

Tensile strength (TS) is an important mechanical property of a material. The conventional mechanical measurement method destroys the object under investigation; hence, the non-destructive evaluation of tensile strength of materials has become a research hotspot in recent years. Currently, there are some accuracy problems associated with evaluating the tensile strength of materials on the basis of single non-destructive testing (NDT) methods such as ultrasonic or electromagnetic methods. In this study, 45 steel is used as an example to study various non-destructive testing methods. First, seven different heat treatment systems are used to prepare standard specimens with different tensile strengths, which are measured by tensile tests. Second, non-destructive testing signals for each specimen are obtained as ultrasonic signals, magnetic Barkhausen noise and magnetic hysteresis signals, and the characteristic parameters of the signals are extracted. Then, single-parameter non-destructive evaluation (SNE) models of tensile strength with three different non-destructive testing methods are developed. Furthermore, a multivariate non-destructive evaluation (MNE) method based on ultrasonic signals, magnetic Barkhausen noise and magnetic hysteresis is proposed to improve the accuracy of the tensile strength measurements obtained from non-destructive testing. A deep residual network (ResNet) is used to combine the features of the three non-destructive testing parameters and an MNE model of tensile strength is developed. Moreover, a data pretreatment method based on the fuzzy mapping relationship is applied to train the MNE model successfully and enhance the stability, accuracy and reliability of the obtained results. Finally, the accuracies of the above four tensile strength evaluation models are confirmed by verification using the specimens. The results show that the MNE model has higher accuracy than the SNE models.


Sign in / Sign up

Export Citation Format

Share Document