USING SOIL TEXTURE TO ESTIMATE SATURATED HYDRAULIC CONDUCTIVITY AND THE IMPACT ON RAINFALL-RUNOFF SIMULATIONS

Author(s):  
Keith Loague
2021 ◽  
Vol 295 ◽  
pp. 113143
Author(s):  
Yudi Yan ◽  
Seyyed Ali Akbar Nakhli ◽  
Jing Jin ◽  
Godfrey Mills ◽  
Clinton S. Willson ◽  
...  

2019 ◽  
Vol 55 (9) ◽  
pp. 7902-7915
Author(s):  
Abhishek Goyal ◽  
Renato Morbidelli ◽  
Alessia Flammini ◽  
Corrado Corradini ◽  
Rao S. Govindaraju

2006 ◽  
Vol 7 (1) ◽  
pp. 61-80 ◽  
Author(s):  
B. Decharme ◽  
H. Douville ◽  
A. Boone ◽  
F. Habets ◽  
J. Noilhan

Abstract This study focuses on the influence of an exponential profile of saturated hydraulic conductivity, ksat, with soil depth on the water budget simulated by the Interaction Soil Biosphere Atmosphere (ISBA) land surface model over the French Rhône River basin. With this exponential profile, the saturated hydraulic conductivity at the surface increases by approximately a factor of 10, and its mean value increases in the root zone and decreases in the deeper region of the soil in comparison with the values given by Clapp and Hornberger. This new version of ISBA is compared to the original version in offline simulations using the Rhône-Aggregation high-resolution database. Low-resolution simulations, where all atmospheric data and surface parameters have been aggregated, are also performed to test the impact of the modified ksat profile at the typical scale of a climate model. The simulated discharges are compared to observations from a dense network consisting of 88 gauging stations. Results of the high-resolution experiments show that the exponential profile of ksat globally improves the simulated discharges and that the assumption of an increase in saturated hydraulic conductivity from the soil surface to a depth close to the rooting depth in comparison with values given by Clapp and Hornberger is reasonable. Results of the scaling experiments indicate that this parameterization is also suitable for large-scale hydrological applications. Nevertheless, low-resolution simulations with both model versions overestimate evapotranspiration (especially from the plant transpiration and the wet fraction of the canopy) to the detriment of total runoff, which emphasizes the need for implementing subgrid distribution of precipitation and land surface properties in large-scale hydrological applications.


SOIL ◽  
2016 ◽  
Vol 2 (3) ◽  
pp. 421-431 ◽  
Author(s):  
Eléonore Beckers ◽  
Mathieu Pichault ◽  
Wanwisa Pansak ◽  
Aurore Degré ◽  
Sarah Garré

Abstract. Determining soil hydraulic properties is of major concern in various fields of study. Although stony soils are widespread across the globe, most studies deal with gravel-free soils, so that the literature describing the impact of stones on the hydraulic conductivity of a soil is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow, and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory experiments and numerical simulations involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned predictive models. Our study suggests that it might be ill-founded to consider that stones only reduce the volume available for water flow. We pointed out several factors of the saturated hydraulic conductivity of stony soils that are not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, laboratory experiments show that an increasing stone content can counteract and even overcome the effect of a reduced volume in some cases: we observed an increase in saturated hydraulic conductivity with volume of inclusions. These differences are mainly important near to saturation. However, comparison of results from predictive models and our experiments in unsaturated conditions shows that models and data agree on a decrease in hydraulic conductivity with stone content, even though the experimental conditions did not allow testing for stone contents higher than 20 %.


Author(s):  
E.O. Ogundipe

Soil properties are important to the development of agricultural crops. This study determined some selected soil properties of a drip irrigated tomato (Lycopersicon esculentum M.) field at different moisture regime in South-Western Nigeria. The experiment was carried out using Randomized Complete Block Design with frequency and depth of irrigation application as the main plot and sub-plot, respectively in three replicates. Three frequencies (7, 5 and 3 days) and three depths equivalent to 100, 75 and 50% of water requirement were used. Undisturbed and disturbed soil samples were collected from 0-5, 5-10, 10-20 and 20-30 cm soil layers for the determination of some soil properties (soil texture, organic matter content, bulk density, infiltration rate and saturated hydraulic conductivity) were determined using standard formulae. Soil Water Content (SWC) monitoring was conducted every two days using a gravimetric technique. The soil texture was sandy loam for all the soil depths; average value of soil organic matter was highest (1.8%) in the 0-5 cm surface layer and decreased with soil depth; the soil bulk density value before and after irrigation experiment ranged from 1.48 and 1.73 g/cm3 and 1.5 and 1.76 g/cm3, respectively; there was a rapid reduction in the initial infiltration and final infiltration rate. Saturated hydraulic conductivity show similar trend although the 20-30 cm layer had the lowest value (50.84 mm/h); the SWC affect bulk density during the growing season. The study showed that soil properties especially bulk density and organic matter content affect irrigation water movement at different depth..


2012 ◽  
Vol 518-523 ◽  
pp. 4815-4818
Author(s):  
Yan Wei Liu ◽  
Zhong Yuan Zhu

In order to improve simulation precision of saturated hydraulic conductivity, use RETC and PTFs function to simulate saturated hydraulic conductivity by measured research area surface soil (0-20cm) physicochemical property and soil texture data. The simulation results were assessed by the approach of consisting in presenting a graphical representation of model simulated compared with observed values and by mean square error. The main results indicate that the RETC-PTFs and local PTFs mean square errors are 1.19 and 0.40 respectively. The precision of RETC-PTFs is lower than local PTFs function obviously using soil physicochemical property and soil texture data. The RETC-PTFs is inappropriate to this area. Accuracy of each input data precision of RETC-PTFs play a big part in because of less data needed. More complete data not always get better simulating results.


2016 ◽  
Vol 64 (3) ◽  
pp. 289-299 ◽  
Author(s):  
Michal Dohnal ◽  
Tomas Vogel ◽  
Jaromir Dusek ◽  
Jana Votrubova ◽  
Miroslav Tesar

AbstractPonded infiltration experiment is a simple test used for in-situ determination of soil hydraulic properties, particularly saturated hydraulic conductivity and sorptivity. It is known that infiltration process in natural soils is strongly affected by presence of macropores, soil layering, initial and experimental conditions etc. As a result, infiltration record encompasses a complex of mutually compensating effects that are difficult to separate from each other. Determination of sorptivity and saturated hydraulic conductivity from such infiltration data is complicated. In the present study we use numerical simulation to examine the impact of selected experimental conditions and soil profile properties on the ponded infiltration experiment results, specifically in terms of the hydraulic conductivity and sorptivity evaluation. The effect of following factors was considered: depth of ponding, ring insertion depth, initial soil water content, presence of preferential pathways, hydraulic conductivity anisotropy, soil layering, surface layer retention capacity and hydraulic conductivity, and presence of soil pipes or stones under the infiltration ring. Results were compared with a large database of infiltration curves measured at the experimental site Liz (Bohemian Forest, Czech Republic). Reasonably good agreement between simulated and observed infiltration curves was achieved by combining several of factors tested. Moreover, the ring insertion effect was recognized as one of the major causes of uncertainty in the determination of soil hydraulic parameters.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Viliam Novák ◽  
Ľubomír Lichner ◽  
Bin Zhang ◽  
Karol Kňava

AbstractThe impact of heating on the peristence of water repellency, saturated hydraulic conductivity, and water retention characteristics was examined on soils from both forest and meadow sites in southwest Slovakia shortly after a wet spell. The top 5 cm of meadow soils had an initial water drop penetration time WDPT at 20°C of 457 s, whereas WDPT in the pine forest was 315 s for the top 5 cm and 982 s if only the top 1 cm was measured. Heating soils at selected temperatures of 50, 100, 150, 200, 250 and 300°C caused a marked drop in water drop penetration time WDPT from the initial value at 20°C. However, samples collected in different years and following an imposed cycle of wetting and drying showed much different trends, with WDPT sometimes initially increasing with temperature, followed by a drop after 200–300°C. The impact of heating temperature on the saturated hydraulic conductivity of soil was small. It was found for both the drying and wetting branches of soil water retention curves that an increase in soil water repellency resulted in a drop in soil water content at the same matric potential. The persistence of soil water repellency was strongly influenced by both the sampling site and time of sampling, as it was characterized by the results of WDPT tests.


Sign in / Sign up

Export Citation Format

Share Document