scholarly journals Rapid evolution in crop-weed hybrids under artificial selection for divergent life histories

2008 ◽  
Vol 2 (2) ◽  
pp. 172-186 ◽  
Author(s):  
Lesley G. Campbell ◽  
Allison A. Snow ◽  
Patricia M. Sweeney ◽  
Julie M. Ketner
Genetics ◽  
2013 ◽  
Vol 196 (3) ◽  
pp. 829-840 ◽  
Author(s):  
Timothy M. Beissinger ◽  
Candice N. Hirsch ◽  
Brieanne Vaillancourt ◽  
Shweta Deshpande ◽  
Kerrie Barry ◽  
...  

2006 ◽  
Vol 35 ◽  
pp. 247-250
Author(s):  
H. Randle ◽  
E. Elworthy

The influence of Natural Selection on the evolution of the horse (Equus callabus) is minimal due to its close association with humans. Instead Artificial Selection is commonly imposed through selection for features such as a ‘breed standard’ or competitive ability. It has long been considered to be useful if indicators of characteristics such as physical ability could be identified. Kidd (1902) suggested that the hair coverings of animals were closely related to their lifestyle, whether they were active or passive. In 1973 Smith and Gong concluded that hair whorl (trichloglyph) pattern and human behaviour is linked since hair patterning is determined at the same time as the brain develops in the foetus. More recently Grandin et al. (1995), Randle (1998) and Lanier et al. (2001) linked features of facial hair whorls to behaviour and production in cattle. Hair whorl features have also been related to temperament in equines (Randle et al., 2003).


2011 ◽  
Vol 300 (4) ◽  
pp. R835-R843 ◽  
Author(s):  
Donato A. Rivas ◽  
Sarah J. Lessard ◽  
Misato Saito ◽  
Anna M. Friedhuber ◽  
Lauren G. Koch ◽  
...  

Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (∼30%; P = 0.04), glucose oxidation (∼50%; P = 0.04), and lipid oxidation (∼40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.


Genetics ◽  
1980 ◽  
Vol 94 (4) ◽  
pp. 989-1000
Author(s):  
Francis Minvielle

ABSTRACT A quantitative character controlled at one locus with two alleles was submitted to artificial (mass) selection and to three modes of opposing natural selection (directional selection, overdominance and underdominance) in a large random-mating population. The selection response and the limits of the selective process were studied by deterministic simulation. The lifetime of the process was generally between 20 and 100 generations and did not appear to depend on the mode of natural selection. However, depending on the values of the parameters (initial gene frequency, selection intensity, ratio of the effect of the gene to the environmental standard deviation, fitness values) the following outcomes of selection were observed: fixation of the allele favored by artificial selection, stable nontrivial equilibrium, unstable equilibrium and loss of the allele favored by artificial selection. Finally, the results of the simulation were compared to the results of selection experiments.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Sira Maria Torvinen ◽  
Mika Silvennoinen ◽  
Maria Mikkonen ◽  
Lauren G. Koch ◽  
Steven L. Britton ◽  
...  

Author(s):  
Alysha T Torbiak ◽  
Robert Blackshaw ◽  
Randall N Brandt ◽  
Bill Hamman ◽  
Charles M. Geddes

Kochia [Bassia scoparia (L.) A.J. Scott] is an invasive C4 tumbleweed in the Great Plains of North America, where it impedes crop harvest and causes significant crop yield losses. Rapid evolution and spread of glyphosate- and acetolactate synthase (ALS) inhibitor-resistant kochia in western Canada limit the herbicide options available for control of these biotypes in field pea (Pisum sativum L.); one of the predominant pulse crops grown in this region. Field experiments were conducted near Lethbridge, Alberta in 2013-2015 and Coalhurst, Alberta in 2013-2014 to determine which herbicide options effectively control glyphosate- and ALS inhibitor-resistant kochia in field pea. Visible injury of field pea was minor (0-4%) in all environments except for Lethbridge 2013, where pre-plant (PP) flumioxazin and all treatments containing post-emergence (POST) imazamox/bentazon resulted in unacceptable (14-23%) pea visible injury. Herbicide impacts on pea yield were minor overall. Carfentrazone + sulfentrazone PP and saflufenacil PP followed by imazamox/bentazon POST resulted in ≥80% visible control of kochia in all environments, while POST imazamox/bentazon alone resulted in ≥80% reduction in kochia biomass in all environments compared with the untreated control (albeit absent of statistical difference in Coalhurst 2014). These results suggest that layering the protoporhyrinogen oxidase-inhibiting herbicides saflufenacil or carfentrazone + sulfentrazone PP with the ALS- and photosystem II-inhibiting herbicide combination imazamox/bentazon POST can effectively control glyphosate- and ALS inhibitor-resistant kochia in field pea while also mitigating further selection for herbicide resistance through the use of multiple effective herbicide modes-of-action.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Beatriz Diaz Pauli ◽  
Sarah Garric ◽  
Charlotte Evangelista ◽  
L. Asbjørn Vøllestad ◽  
Eric Edeline

Sign in / Sign up

Export Citation Format

Share Document