scholarly journals Broadening of Diffraction Peak Widths and Temperature Nonuniformity During Flash Experiments

2016 ◽  
Vol 99 (10) ◽  
pp. 3429-3434 ◽  
Author(s):  
Jean‐Marie Lebrun ◽  
Shikhar K. Jha ◽  
Scott J. McCormack ◽  
Waltraud M. Kriven ◽  
Rishi Raj
1996 ◽  
Vol 68 (5) ◽  
pp. 643-645 ◽  
Author(s):  
B. Heying ◽  
X. H. Wu ◽  
S. Keller ◽  
Y. Li ◽  
D. Kapolnek ◽  
...  

2018 ◽  
Vol 33 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Anderson Márcio de Lima Batista ◽  
Marcus Aurélio Ribeiro Miranda ◽  
Fátima Itana Chaves Custódio Martins ◽  
Cássio Morilla Santos ◽  
José Marcos Sasaki

Several methods can be used to obtain, from powder diffraction patterns, crystallite size and lattice strain of polycrystalline samples. Some examples are the Scherrer equation, Williamson–Hall plots, Warren/Averbach Fourier decomposition, Whole Powder Pattern Modeling, and Debye function analysis. To apply some of these methods, it is necessary to remove the contribution of the instrument to the widths of the diffraction peaks. Nowadays, one of the main samples used for this purpose is the LaB6 SRM660b commercialized by the National Institute of Standard Technology; the width of the diffraction peak of this sample is caused only by the instrumental apparatus. However, this sample can be expensive for researchers in developing countries. In this work, the authors present a simple route to obtain micron-sized polycrystalline CeO2 that have a full width at half maximum comparable with the SRM660b and therefore it can be used to remove instrumental broadening.


1997 ◽  
Vol 36 (Part 2, No. 8B) ◽  
pp. L1062-L1064 ◽  
Author(s):  
Motoyuki Tanaka ◽  
Seiji Nakahata ◽  
Kouichi Sogabe ◽  
Hirohiko Nakata ◽  
Masaaki Tobioka

Author(s):  
Frastica Deswardani ◽  
Helga Dwi Fahyuan ◽  
Rimawanto Gultom ◽  
Eif Sparzinanda

Telah dilakukan penelitian mengenai pengaruh konsentrasi doping karbon pada lapisan tipis TiO2 yang ditumbuhkan dengan metode spray terhadap struktur kristal dan morfologi TiO2. Hasil karakterisasi SEM menunjukkan bahwa penambahan doping karbon dapat meningkatkan ukuran butir. Lapisan TiO2 doping karbon 8% diperoleh ukuran butir terbesar adalah 1.35 μm, sedangkan ukuran tekecilnya adalah 0.45 μm. Sementara itu, untuk lapisan tipis TiO2 didoping karbon 15% memiliki ukuran butir terbesar yaitu 1.76 μm dan terkecil 0.9 μm. Hasil XRD menunjukkan seluruh puncak difraksi lapisan tipis TiO2 dengan doping karbon 8% dan 15% merupakan TiO2 anatase. Ukuran kristal lapisan TiO2 didoping karbon 8% diperoleh sebesar 638,08 Å dan untuk pendopingan 15% karbon ukuran kristal lapisan tipis TiO2 adalah 638,09 Å, hal ini menunjukkan ukuran kristal kedua sampel tidak mengalami perubahan yang signifikan.   TiO2 thin film with carbon doping has been successfully grown by spray method. The research on the effect of carbon doping on crystal structure and morfology of TiO2 has been prepared by varying carbon concentration (8% and 15% carbon). Analysis of SEM showed that the addition of carbon may increase the grain size. Thin film of TiO2 doped carbon 8% has the largest grain size 1.35 μm, while the smallest grain size is 0.45 μm. Meanwhile, for thin film TiO2 doped carbon 15% has the largest grain size 1.76 μm and smallest 0.9 μm. The XRD results showed the entire diffraction peak of thin film TiO2 doped carbon 8% and 15% were TiO2 anatase. The crystal size of thin film TiO2 doped carbon 8% was obtained at 638.08 Å and for thin film TiO2 doped carbon 15% the crystalline size of TiO2 thin film was 638.09 Å, this shows that the crystal size of both samples did not change significantly.    


2021 ◽  
pp. 2000447
Author(s):  
Devilal Dahal ◽  
Hiroka Warren ◽  
Parthapratim Biswas

1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


2002 ◽  
Vol 17 (2) ◽  
pp. 104-111 ◽  
Author(s):  
I. C. Dragomir ◽  
T. Ungár

Diffraction peak profiles broaden due to the smallness of crystallites and the presence of lattice defects. Strain broadening of powders of polycrystalline materials is often anisotropic in terms of the hkl indices. This kind of strain anisotropy has been shown to be well interpreted assuming dislocations as one of the major sources of lattice distortions. The knowledge of the dislocation contrast factors are inevitable for this interoperation. In a previous work the theoretical contrast factors were evaluated for cubic crystals for elastic constants in the Zener constant range 0.5≤Az≤8. A large number of ionic crystals and many refractory metals have elastic anisotropy, Az, well below 0.5. In the present work the contrast factors for this lower anisotropy-constant range are investigated. The calculations and the corresponding peak profile analysis are tested on ball milled PbS and Nb and nanocrystalline CeO2.


Sign in / Sign up

Export Citation Format

Share Document